【BZOJ3879】SvT(后缀自动机,虚树)

题面

BZOJ

题解

看着这个东西,询问若干个前缀两两之间的\(lcp\)?

显然\(lcp\)就是\(SAM\)构建出来的\(parent\)数上的\(LCA\)所代表的长度。

那么这样子就转为了树型\(dp\)。

然后发现是前缀?把串转过来就是后缀了。

\(\sum t\)是\(O(n)\)级别的?显然虚树。

那么直接虚树搞搞就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAX 1010000
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m;char ch[MAX];
long long ans;
struct Node
{
int son[26];
int len,ff;
}t[MAX];
int last=1,tot=1,lt[MAX];
void extend(int c)
{
int p=last,np=++tot;last=tot;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];t[nq].len=t[p].len+1;
t[q].ff=t[np].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
}
struct Line{int v,next;}e[MAX];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dfn[MAX],low[MAX],dep[MAX],fa[MAX],tim,size[MAX],hson[MAX],top[MAX];
void dfs1(int u,int ff)
{
size[u]=1;dep[u]=dep[ff]+1;fa[u]=ff;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
dfs1(v,u);size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
dfn[u]=++tim;top[u]=tp;
if(hson[u])dfs2(hson[u],tp);
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=hson[u])dfs2(e[i].v,e[i].v);
low[u]=tim;
}
int LCA(int u,int v)
{
while(top[u]^top[v])(dep[top[u]]<dep[top[v]])?v=fa[top[v]]:u=fa[top[u]];
return dep[u]<dep[v]?u:v;
}
int p[MAX],S[MAX];
bool vis[MAX];
bool cmp(int a,int b){return dfn[a]<dfn[b];}
int dp(int u)
{
int ret=0;if(vis[u])ret=1;
for(int i=h[u];i;i=e[i].next)
{
int d=dp(e[i].v);
ans+=1ll*t[u].len*d*ret;
ret+=d;
}
return ret;
}
int main()
{
n=read();m=read();
scanf("%s",ch+1);reverse(&ch[1],&ch[n+1]);
for(int i=1;i<=n;++i)extend(ch[i]-97),lt[i]=last;
for(int i=1;i<=tot;++i)if(t[i].ff)Add(t[i].ff,i);
dfs1(1,0);dfs2(1,1);memset(h,0,sizeof(h));cnt=1;
while(m--)
{
int t=read(),top=0;cnt=0;
for(int i=1;i<=t;++i)vis[p[i]=lt[n-read()+1]]=true;
sort(&p[1],&p[t+1],cmp);
for(int i=t;i>1;--i)p[++t]=LCA(p[i],p[i-1]);
sort(&p[1],&p[t+1],cmp);t=unique(&p[1],&p[t+1])-p-1;
for(int i=1;i<=t;++i)
{
while(top&&low[S[top]]<dfn[p[i]])--top;
Add(S[top],p[i]);S[++top]=p[i];
}
ans=0;dp(p[1]);printf("%lld\n",ans);
for(int i=1;i<=t;++i)h[p[i]]=0,vis[p[i]]=false;
}
return 0;
}

【BZOJ3879】SvT(后缀自动机,虚树)的更多相关文章

  1. bzoj3879 SvT(后缀自动机+虚树)

    bzoj3879 SvT(后缀自动机+虚树) bzoj 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置 ...

  2. CF1073G Yet Another LCP Problem 后缀自动机 + 虚树 + 树形DP

    题目描述 记 $lcp(i,j)$ 表示 $i$ 表示 $i$ 这个后缀和 $j$ 这个后缀的最长公共后缀长度给定一个字符串,每次询问的时候给出两个正整数集合 $A$ 和 $B$,求$\sum_{i\ ...

  3. BZOJ3413: 匹配(后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并... 首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数.(画一画就出来了) 然后直 ...

  4. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  5. 洛谷P2178 [NOI2015]品酒大会(后缀自动机 线段树)

    题意 题目链接 Sol 说一个后缀自动机+线段树的无脑做法 首先建出SAM,然后对parent树进行dp,维护最大次大值,最小次小值 显然一个串能更新答案的区间是\([len_{fa_{x}} + 1 ...

  6. BZOJ1396: 识别子串(后缀自动机 线段树)

    题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...

  7. [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)

    https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...

  8. 洛谷P4493 [HAOI2018]字串覆盖(后缀自动机+线段树+倍增)

    题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能 ...

  9. luogu5212/bzoj2555 substring(后缀自动机+动态树)

    对字符串构建一个后缀自动机. 每次查询的就是在转移边上得到节点的parent树中后缀节点数量. 由于强制在线,可以用动态树维护后缀自动机parent树的子树和. 注意一个玄学的优化:每次在执行连边操作 ...

  10. 模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)

    模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...

随机推荐

  1. kubectl客户端工具远程连接k8s集群

    一.概述 一般情况下,在k8smaster节点上集群管理工具kubectl是连接的本地http8080端口和apiserver进行通讯的,当然也可以通过https端口进行通讯前提是要生成证书.所以说k ...

  2. nginx解决前端跨域配置

    在nginx.conf文件中 添加如上配置: 在ajax中将原来的 url:http://192.168.1.127:8905/findItem 改成:'http://localhost/findIt ...

  3. 案例学python——案例二:连接数据库MySql

    调侃的话:案例一跑完之后,欣赏把玩了一番.人就有点飘飘然,昨天除了做饭吃饭,就是玩三国杀,江郎才尽,今天周一,不飘了,敲点代码,看看Python操作数据库有啥不一样的. 前期准备: 1.数据库 电脑上 ...

  4. .NetCore实践篇:分布式监控Zipkin持久化之殇

    前言 本系列已写了四篇文章,读本篇之前,可以先读前面几篇. 思考大纲:.Net架构篇:思考如何设计一款实用的分布式监控系统? 实践篇一:.NetCore实践篇:分布式监控客户端ZipkinTracer ...

  5. .NETCore_生成实体

    先安装以下三个包,或者使用Nuget引用 不要问我为什么,按哥说的做吧: Install-Package Microsoft.EntityFrameworkCore.SqlServer Install ...

  6. StoryLine3变量存储与跳转后台时的使用

    前言 公司项目原因,接触到storyline3(后面简称SL)课件制作工具,类似ppt,但是又多了互动.交互,且页面元素可添加触发器,触发器中可执行js代码. 1.官方教程 在SL中,会有“了解详情. ...

  7. C_数据结构_递归实现累加

    # include <stdio.h> long sum(int n) { //用递归实现: ) ; else ) + n; /* 用for循环实现: long s = 0; int i; ...

  8. beta阶段测试基本概况报告

    文件地址 测试基本信息                                                                                Bitmap 测试 ...

  9. 【Beta阶段】M2事后分析

    先上照片,最后一次开会了啊... 计划 你原计划的工作是否最后都做完了? 如果有没做完的,为什么? 答:没有全部做完,到目前为止,我们的还有几个实验的报告生成功能没有上线.这几个实验的数据处理文件已经 ...

  10. 20135327郭皓--Linux内核分析第八周 进程的切换和系统的一般执行过程

    第八周 进程的切换和系统的一般执行过程 一.进程切换的关键代码switch_to分析 1.进程调度与进程调度的时机分析 不同类型的进程有不同的调度需求 第一种分类: I/O-bound:频繁进行I/O ...