注释:

  CNN使用TF搭建比较简单,就像Hough检测使用CV很简单一样。但是怎么使用CNN去做一些实际操作,或者说怎么使用现有的方法进行慢慢改进,这是一个很大的问题!

  直接跟着书本或者视频学习有点膨胀,遇到问题又有点畏缩,现在进行每个网络的实际操作,注意不是mnist操作测试验证!那个东西说难听点就是玩的。


AlexNet的特点

    1. 针对网络架构:

      • 成功的使用ReLU作为激活函数,并验证其效果在较深的网络要优于Sigmoid.
      • 使用LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变的相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
      • 使用重叠的最大池化,论文中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
    2. 针对过拟合现象: 
      • 数据增强,对原始图像随机的截取输入图片尺寸大小(以及对图像作水平翻转操作),使用数据增强后大大减轻过拟合,提升模型的泛化能力。同时,论文中会对原始数据图片的RGB做PCA分析,并对主成分做一个标准差为0.1的高斯扰动。
      • 使用Dropout随机忽略一部分神经元,避免模型过拟合。
    3. 针对训练速度: 
      • 使用GPU计算,加快计算速度

AlexNet的结构

conv的使用注意:

 #[batch, in_height, in_width, in_channels]
#[filter_height, filter_width, in_channels, out_channels]
#strides: 总共四个维度,代表每个纬度移动的步长。图像一般都是2维,只用最中间两个[1,2,3,1].其它多维度的数据也最多到四个纬度
#padding:SAME-->>代表步长为1时,卷积之前图像边缘补充0,最后结果和输入图像大小相同。注意这里步长为其它值时,最后的图像就变换了
#VALID-->>代表图像随着步长和卷积核的大小改变
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

AlexNet实践的更多相关文章

  1. tensorFlow入门实践(三)初识AlexNet实现结构

    参考黄文坚<TensorFlow实战>一书,完成AlexNet的整体实现并展望其训练和预测过程. import tensorflow as tf batch_size = 32 num_b ...

  2. 【深度学习系列】用PaddlePaddle和Tensorflow实现AlexNet

    上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...

  3. CNN网络介绍与实践:王者荣耀英雄图片识别

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者介绍:高成才,腾讯Android开发工程师,2016.4月校招加入腾讯,主要负责企鹅电竞推流SDK.企鹅电竞APP的功能开发和技术优化工作 ...

  4. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet

    上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...

  5. 让AI简单且强大:深度学习引擎OneFlow技术实践

    本文内容节选自由msup主办的第七届TOP100summit,北京一流科技有限公司首席科学家袁进辉(老师木)分享的<让AI简单且强大:深度学习引擎OneFlow背后的技术实践>实录. 北京 ...

  6. 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇

    [原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...

  7. Pytorch多进程最佳实践

    预备知识 模型并行( model parallelism ):即把模型拆分放到不同的设备进行训练,分布式系统中的不同机器(GPU/CPU等)负责网络模型的不同部分 —— 例如,神经网络模型的不同网络层 ...

  8. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  9. DNN结构演进History—CNN( 优化,LeNet, AlexNet )

    本文相对于摘抄的文章已经有大量的修改,如有阅读不适,请移步原文. 以下摘抄转自于维基:基于深度学习的图像识别进展百度的若干实践 从没有感知域(receptive field) 的深度神经网络,到固定感 ...

随机推荐

  1. Oracle物化视图梳理

    --物化视图可以分为三种类型:* 包含聚集的物化视图* 只包含连接的物化视图* 嵌套物化视图三种物化视图的快速刷新的限制条件有很大区别,而对于其他方面则区别不大. --物化视图创建方式(Build M ...

  2. 【原创】MIPS相关

    MIPS是单字长定点指令平均执行速度 Million Instructions Per Second的缩写. 路由器等嵌入式系统多采用MIPS和ARM两种指令架构,最近在研究路由器,借机总结一下基于M ...

  3. summernote富文本编辑器

    下载summernote官方demo,解压,把文件夹中的summernote.js,summernote.css和font整个文件夹都放到服务器对应的项目目录里 引入summernote 所需要的bo ...

  4. 温度转换-java

    java 温度转换 题目内容: 写一个将华氏温度转换成摄氏温度的程序,转换的公式是: °F = (9/5)*°C + 32 其中C表示摄氏温度,F表示华氏温度. 程序的输入是一个整数,表示华氏温度.输 ...

  5. 洛谷P1357 花园(状态压缩 + 矩阵快速幂加速递推)

    题目链接:传送门 题目: 题目描述 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(<=N<=^).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻 ...

  6. prototype的一些事

    <script type="text/javascript"> foo=function(){ this.mayName="Foo function" ...

  7. alpha冲刺(7/10)

    前言 队名:旅法师 作业链接 队长博客 燃尽图 会议 会议照片 会议内容 陈晓彬(组长) 今日进展: 召开会议 撰写博客 项目初步整合前端代码 问题困扰: 大家可能因为某些问题会联系卡在某个点很久,需 ...

  8. 学习笔记TF045:人工智能、深度学习、TensorFlow、比赛、公司

    人工智能,用计算机实现人类智能.机器通过大量训练数据训练,程序不断自我学习.修正训练模型.模型本质,一堆参数,描述业务特点.机器学习和深度学习(结合深度神经网络). 传统计算机器下棋,贪婪算法,Alp ...

  9. python socket 函数介绍

    socket 函数原型:socket.socket([family[,type[,proto]]]) family参数取值(协议族): socket.AF_INET        -->ipv4 ...

  10. Windows下struct和union字节对齐设置以及大小的确定(一 简介和结构体大小的确定)

    在windows下设置字节对齐大小的方式,目前我了解有三种: 1. 在编译程序时候的编译选项  /Zp[n],如 cl /Zp4 表示对齐大小是4字节: 2. 预处理命令   #pragma pack ...