AlexNet实践
注释:
CNN使用TF搭建比较简单,就像Hough检测使用CV很简单一样。但是怎么使用CNN去做一些实际操作,或者说怎么使用现有的方法进行慢慢改进,这是一个很大的问题!
直接跟着书本或者视频学习有点膨胀,遇到问题又有点畏缩,现在进行每个网络的实际操作,注意不是mnist操作测试验证!那个东西说难听点就是玩的。
AlexNet的特点
- 针对网络架构:
- 成功的使用ReLU作为激活函数,并验证其效果在较深的网络要优于Sigmoid.
- 使用LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变的相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
- 使用重叠的最大池化,论文中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
- 针对过拟合现象:
- 数据增强,对原始图像随机的截取输入图片尺寸大小(以及对图像作水平翻转操作),使用数据增强后大大减轻过拟合,提升模型的泛化能力。同时,论文中会对原始数据图片的RGB做PCA分析,并对主成分做一个标准差为0.1的高斯扰动。
- 使用Dropout随机忽略一部分神经元,避免模型过拟合。
- 针对训练速度:
- 使用GPU计算,加快计算速度
AlexNet的结构



conv的使用注意:
#[batch, in_height, in_width, in_channels]
#[filter_height, filter_width, in_channels, out_channels]
#strides: 总共四个维度,代表每个纬度移动的步长。图像一般都是2维,只用最中间两个[1,2,3,1].其它多维度的数据也最多到四个纬度
#padding:SAME-->>代表步长为1时,卷积之前图像边缘补充0,最后结果和输入图像大小相同。注意这里步长为其它值时,最后的图像就变换了
#VALID-->>代表图像随着步长和卷积核的大小改变
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
AlexNet实践的更多相关文章
- tensorFlow入门实践(三)初识AlexNet实现结构
参考黄文坚<TensorFlow实战>一书,完成AlexNet的整体实现并展望其训练和预测过程. import tensorflow as tf batch_size = 32 num_b ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...
- CNN网络介绍与实践:王者荣耀英雄图片识别
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者介绍:高成才,腾讯Android开发工程师,2016.4月校招加入腾讯,主要负责企鹅电竞推流SDK.企鹅电竞APP的功能开发和技术优化工作 ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...
- 让AI简单且强大:深度学习引擎OneFlow技术实践
本文内容节选自由msup主办的第七届TOP100summit,北京一流科技有限公司首席科学家袁进辉(老师木)分享的<让AI简单且强大:深度学习引擎OneFlow背后的技术实践>实录. 北京 ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...
- Pytorch多进程最佳实践
预备知识 模型并行( model parallelism ):即把模型拆分放到不同的设备进行训练,分布式系统中的不同机器(GPU/CPU等)负责网络模型的不同部分 —— 例如,神经网络模型的不同网络层 ...
- 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)
基于深度学习和迁移学习的识花实践(转) 深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...
- DNN结构演进History—CNN( 优化,LeNet, AlexNet )
本文相对于摘抄的文章已经有大量的修改,如有阅读不适,请移步原文. 以下摘抄转自于维基:基于深度学习的图像识别进展百度的若干实践 从没有感知域(receptive field) 的深度神经网络,到固定感 ...
随机推荐
- H5-移动端实现滑屏翻页-原生js/jquery
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- <转载> 从算法上解读自动驾驶是如何实现的?
科技新闻小鹏汽车2016-03-28 10:42 [摘要]车辆路径规划问题中路网模型.路径规划算法和交通信息的智能预测为关键点. 由于驾驶员的驾驶工作繁重,同时随着汽车拥有量的增加,非职业驾驶员的数 ...
- PHP socket服务端与客户端的简易通信
今天学习socket通信的同时,顺便整理了下以前初识socket的知识. 现在关于php的socket通信,有些框架已经十分成熟了,比如 swoole 和 workerman,这两个大家可以学习学习 ...
- Xenserver7.6修改root密码
一:重启xenserver服务器 进入此界面时,先用上下建随便动下,解除4S倒计时,后按e键
- wpf-x命名空间-Markup Extension(标记扩展)
1.x:type 用于前端类型声明 与C# 代码 Type类似 2.x:Null 代表Null 某些时候需要显示的为一些值设置为空 前端为 x:Null C# 中 为 Null 3.x:ar ...
- python day20面向对象-属性,类方法,静态方法
一.属性的初识 # class Person: # # def __init__(self,name,hight,weight): # self.name = name # self.__hight ...
- 剑指Offer 8. 跳台阶 (递归)
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 题目地址 https://www.nowcoder.com/pract ...
- mysql date
date_format(`time`, '%Y-%m-%d %h:%i:%s' ) as time
- 用vs2008打开vs2005项目
1 使用记事本打开*.sln解决方案文件,将Visual Studio 2005改为Visual Studio 2008 将版本号改为9.00 2 打开扩展名为*.csproj的项目文件,在Defau ...
- VUE开发SPA之微信授权登录
SPA单页应用中微信授权登录的一点思路 单页应用应该如何解决微信授权登录的尴尬跳转?后退无法返回?主要遇到的问题就是 先进入单页应用,一边渲染页面一边判断用户有没有登录,当判断到没有登录时异步数据请求 ...