OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测)
Haar-like
通俗的来讲,就是作为人脸特征即可。
Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。
opencv api
要想使用opencv,就必须先知道其能干什么,怎么做。于是API的重要性便体现出来了。就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了。
如下:
读取图片
只需要给出待操作的图片的路径即可。
import cv2
image = cv2.imread(imagepath)
灰度转换
灰度转换的作用就是:转换成灰度的图片的计算强度得以降低。
import cv2
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
画图
opencv 的强大之处的一个体现就是其可以对图片进行任意编辑,处理。
下面的这个函数最后一个参数指定的就是画笔的大小。
import cv2
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
显示图像
编辑完的图像要么直接的被显示出来,要么就保存到物理的存储介质。
import cv2
cv2.imshow("Image Title",image)
获取人脸识别训练数据
看似复杂,其实就是对于人脸特征的一些描述,这样opencv在读取完数据后很据训练中的样品数据,就可以感知读取到的图片上的特征,进而对图片进行人脸识别。
import cv2
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
里卖弄的这个xml文件,就是opencv在GitHub上共享出来的具有普适的训练好的数据。我们可以直接的拿来使用。
训练数据参考地址:
https://github.com/opencv/opencv/tree/master/data/haarcascades
探测人脸
说白了,就是根据训练的数据来对新图片进行识别的过程。
import cv2
# 探测图片中的人脸
faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.15,
minNeighbors = 5,
minSize = (5,5),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
我们可以随意的指定里面参数的值,来达到不同精度下的识别。返回值就是opencv对图片的探测结果的体现。
处理人脸探测的结果
结束了刚才的人脸探测,我们就可以拿到返回值来做进一步的处理了。但这也不是说会多么的复杂,无非添加点特征值罢了。
import cv2
print "发现{0}个人脸!".format(len(faces))
for(x,y,w,h) in faces:
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
实例
有了刚才的基础,我们就可以完成一个简单的人脸识别的小例子了。
基于照片:
图片素材
下面的这张图片将作为我们的检测依据。
人脸检测代码
import cv2
import numpy as npimport sys,os,glob,numpy
from skimage import io#指定图片的人脸识别然后存储
img = cv2.imread("test.jpg")
color = (0, 255, 0)grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
classfier = cv2.CascadeClassifier("C:\\Users\\22291_000\\Anaconda3\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_alt2.xml")
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects) > 0: # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
cv2.rectangle(img, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 3) #5控制绿色框的粗细# 写入图像
cv2.imwrite('output.jpg',img)
cv2.imshow("Find Faces!",img)
cv2.waitKey(0)
人脸检测结果
输出图片:
基于视频:
人脸检测代码
import cv2
import sys
import logging as log
import datetime as dt
from time import sleepcascPath = "C:\\Users\\22291_000\\Anaconda3\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_alt2.xml"
faceCascade = cv2.CascadeClassifier(cascPath)# 打开视频捕获设备
video_capture = cv2.VideoCapture(0)while True:
if not video_capture.isOpened():
print('Unable to load camera.')
sleep(5)
pass# 读视频帧
ret, frame = video_capture.read()# 转为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 调用分类器进行检测
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
#flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)# 画矩形框
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)# 显示视频
cv2.imshow('Video', frame)if cv2.waitKey(1) & 0xFF == ord('q'):
break# 关闭摄像头设备
video_capture.release()# 关闭所有窗口
cv2.destroyAllWindows()
人脸检测结果
OpenCV + python 实现人脸检测(基于照片和视频进行检测)的更多相关文章
- 手把手教你如何用 OpenCV + Python 实现人脸检测
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...
- opencv+python+dlib人脸关键点检测、实时检测
安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36 ...
- opencv+python实时人脸检测、磨皮
import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("d ...
- 手把手教你如何用 OpenCV + Python 实现人脸识别
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...
- opencv python训练人脸识别
总计分为三个步骤 一.捕获人脸照片 二.对捕获的照片进行训练 三.加载训练的数据,识别 使用python3.6.8,opencv,numpy,pil 第一步:通过笔记本前置摄像头捕获脸部图片 将捕获的 ...
- ILSVRC2016目标检测任务回顾——视频目标检测(VID)
转自知乎<深度学习大讲堂> 雷锋网(公众号:雷锋网)按:本文作者王斌,中科院计算所前瞻研究实验室跨媒体计算组博士生,导师张勇东研究员.2016年在唐胜副研究员的带领下,作为计算所MCG-I ...
- OpenCV实战:人脸关键点检测(FaceMark)
Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author: Amusi Date: 2018-03-20 ...
- 使用OpenCV和Python进行人脸识别
介绍 人脸识别是什么?或识别是什么?当你看到一个苹果时,你的大脑会立刻告诉你这是一个苹果.在这个过程中,你的大脑告诉你这是一个苹果水果,用简单的语言来说就是识别.那么什么是人脸识别呢?我肯定你猜对了. ...
- opencv 美白磨皮人脸检测<转>
1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理, ...
随机推荐
- OpenCV3.2.0+VS2017环境配置与常见问题(巨细坑爹版)
目录 安装 常见问题 题外话:首先,配环境一定要有耐心... 本博客是本小白第一次装OpenCV成功后第一时间整理发布.用的是刚下载好的OpenCV3.2.0版,用x64编译器Debug运行(当然Re ...
- JavaScript踩坑
1 //这样做会抛出错误 alert(ttt); //这样做不会,只是会弹出undefine而已 alert(window.ttt); 当然可以try catch如此捕获异常 try { //这样做会 ...
- 爬虫——request
命名规范 module_name,模块 package_name,包 ClassName,类 method_name,方法 ExceptionName,异常 function_name,函数 GLOB ...
- 用shell脚本守护后台进程
假如现在在 crond 中添加了一个每分钟执行的定时任务如下: */ * * * * root cd /data/sbin; sh test.sh >/dev/>& 为了防止上一个 ...
- yii2 数据库和ActiveRecord
Yii2数据库和 ActiveRecord 类 1.在 common/config/main-local.php 里面配置数据账号和密码. 2.ActiveRecord(活动记录,简称AR类),提供了 ...
- Yii2 表单(form)
表单 1.表单的创建 在 yii 中主要通过 yii\widgets\ActiveForm 类来创建表单 ActiveForm::begin() 不仅创建了一个表单实例,同时也标志着表单的开始. 放在 ...
- php 数组模糊匹配
php 数组模糊匹配: $list = array(); // 匹配后的结果 $arr = array("abcd","abef","efgh&quo ...
- redis键值操作
1.1. redis键值操作 1.1.1. keys patten 查询相应的key 可以精确的查,也可以模糊的查 1.1.1.1. 通配符:* ? [] 在redis里,模糊查询key的时候有3个通 ...
- GMA Round 1 逃亡
传送门 逃亡 你在森林中,遇到了一只老虎.此时此刻,老虎在(0,0)的位置,你在(2,1)的位置. 你开始沿着一条林间小路逃亡,移动向量是$(\frac{\sqrt{6}}{2},\frac{\sqr ...
- SharePoint 配置PowerShell任务计划
前言 最近,有这么个需求,需要定时为SharePoint更新内容,所以,就想到了PowerShell命令和任务计划(Windows自带的功能,英文叫Task Schedule,在开始菜单里就能找到), ...