LeetCode 60 第K个排列
题目:
给出集合 [1,2,3,…,n]
,其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
说明:
- 给定 n 的范围是 [1, 9]。
- 给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3
输出: "213"
示例 2:
输入: n = 4, k = 9
输出: "2314"
解题思路:转自https://www.cnblogs.com/ariel-dreamland/p/9149577.html
这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,我们可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见https://bangbingsyb.blogspot.com/2014/11/leetcode-permutation-sequence.html
首先我们要知道当n = 3时,其排列组合共有3! = 6种,当n = 4时,其排列组合共有4! = 24种,我们就以n = 4, k = 17的情况来分析,所有排列组合情况如下:
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412 <--- k = 17
3421
4123
4132
4213
4231
4312
4321
我们可以发现,每一位上1,2,3,4分别都出现了6次,当第一位上的数字确定了,后面三位上每个数字都出现了2次,当第二位也确定了,后面的数字都只出现了1次,当第三位确定了,那么第四位上的数字也只能出现一次,那么下面我们来看k = 17这种情况的每位数字如何确定,由于k = 17是转化为数组下标为16:
最高位可取1,2,3,4中的一个,每个数字出现3!= 6次,所以k = 16的第一位数字的下标为16 / 6 = 2,即3被取出
第二位此时从1,2,4中取一个,k = 16时,k' = 16 % (3!) = 4,而剩下的每个数字出现2!= 2次,所以第二数字的下标为4 / 2 = 2,即4被取出
第三位此时从1,2中去一个,k' = 4时,k'' = 4 % (2!) = 0,而剩下的每个数字出现1!= 1次,所以第三个数字的下标为 0 / 1 = 0,即1被取出
第四位是从2中取一个,k'' = 0时,k''' = 0 % (1!) = 0,而剩下的每个数字出现0!= 1次,所以第四个数字的下标为0 / 1= 0,即2被取出
那么我们就可以找出规律了
a1 = k / (n - 1)!
k1 = k
a2 = k1 / (n - 2)!
k2 = k1 % (n - 2)!
...
an-1 = kn-2 / 1!
kn-1 = kn-2 / 1!
an = kn-1 / 0!
kn = kn-1 % 0!
代码:
class Solution {
public:
string getPermutation(int n, int k) {
string num = "";
string ans;
vector<int> f(n, );
for(int i = ; i < n; ++i)
f[i] = f[i-] * i;
--k;
for(int i = n; i > ; --i) {
int temp = k / f[i-];
k %= f[i-];
ans.push_back(num[temp]);
num.erase(temp, );
}
return ans;
}
};
LeetCode 60 第K个排列的更多相关文章
- Java实现 LeetCode 60 第k个排列
60. 第k个排列 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" &q ...
- LeetCode 60. 第k个排列(Permutation Sequence)
题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "1 ...
- LeetCode:第K个排列【60】
LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: &quo ...
- LeetCode 中级 - 第k个排列(60)
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3 ...
- [LeetCode]60. Permutation Sequence求全排列第k个
/* n个数有n!个排列,第k个排列,是以第(k-1)/(n-1)!个数开头的集合中第(k-1)%(n-1)!个数 */ public String getPermutation(int n, int ...
- 60第K个排列
题目:给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列.按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" &quo ...
- 力扣60——第k个排列
原题 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: 1. "123" 2. &qu ...
- leetCode 60.Permutation Sequence (排列序列) 解题思路和方法
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- 算法:60.第k个排列
解答参考:https://blog.csdn.net/lqcsp/article/details/23322951 题目链接:https://leetcode-cn.com/problems/perm ...
随机推荐
- word之常用功能
0.word区域:标题栏.快速访问工具栏.功能区.功能按钮.导航窗口.编辑区.水平垂直滑动条.状态栏 1.更改office主题.文件---帐户---office主题.(传统白色.浅灰色.深灰色) 2. ...
- 152. Maximum Product Subarray(动态规划)
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
- SqlServer父节点与子节点查询及递归
在最近老是用到这个SQL,所以记下来了: 1:创建表 CREATE TABLE [dbo].[BD_Booklet]( [ObjID] [int] IDENTITY(1,1) NOT NULL, [P ...
- 【数据使用】3k水稻数据库现成SNP的使用
---恢复内容开始--- 我们经常说幻想着使用已有数据发表高分文章,的确,这样的童话故事每天都在发生,但如何走出第一步我们很多小伙伴不清楚,那么我们就从水稻SNP数据库的使用来讲起. http://s ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- MI200e电力线通讯
最近做课设,选了电力线通讯这种途径,经过百度google等一番查询,最终敲定了mi200e这块国产芯片. 课设要求就是双机通讯,互传传感器信息以及模拟一个时钟 然后淘宝买了拆机的成品,我拿回来把mcu ...
- .NET 实用扩展方法
.NET 实用扩展方法(持续更新...) 1. 字符串转换为可空数值类型(int, long, float...类似) /// <summary> /// 将字符串转换成32位整数,转换失 ...
- GIT操纵
简易的命令行入门教程: Git 全局设置: git config --global user.name "XXX" git config --global user.email & ...
- bzoj千题计划168:bzoj3513: [MUTC2013]idiots
http://www.lydsy.com/JudgeOnline/problem.php?id=3513 组成三角形的条件:a+b>c 其中,a<c,b<c 若已知 两条线段之和=i ...
- BZOJ5487: [Usaco2018 Dec]Cowpatibility
Description 研究证明,有一个因素在两头奶牛能否作为朋友和谐共处这方面比其他任何因素都来得重要--她们是不是喜欢同 一种口味的冰激凌!Farmer John的N头奶牛(2≤N≤50,000) ...