UOJ14 DZY Loves Graph 并查集
题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号)、删除前$K$大边、撤销前一次操作,每一次操作后询问最小生成树边权和。$N \leq 3 \times 10^5 , M \leq 5 \times 10^5$
可以发现可以直接大力用并查集做,因为一条边只要合并了两个集合就能产生贡献。
关于删除可以将边的加入扔到栈里面,删除的时候不断弹栈即可。
撤销操作对于加边就是删掉了一条边,而对于删边就相当于什么都不做,直接做即可。
加入每一条边之后的答案要一起放在栈里面,这样删边+撤销的答案询问就可以$O(1)$解决。
#include<bits/stdc++.h> using namespace std; inline int read(){ ; ; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = ; c = getchar(); } while(isdigit(c)){ a = (a << ) + (a << ) + (c ^ '); c = getchar(); } return f ? -a : a; } , MAXM = ; int fa[MAXN] , size[MAXN] , top , N , M , lasStep; ]; bool isadd; ]; inline int find(int x){ while(fa[x] != x) x = fa[x]; return x; } inline void init(){ ; i <= N ; i++){ fa[i] = i; size[i] = ; } } inline void merge(int a , int b , int k){ a = find(a); b = find(b); if(a != b){ if(size[a] > size[b]) swap(a , b); fa[a] = b; size[b] += size[a]; s[++top][] = a; s[top][] = b; s[top][] = s[top - ][] + k; s[top][] = s[top - ][] + ; } else{ s[top][] = s[++top][] = ; s[top][] = s[top - ][]; s[top][] = s[top - ][]; } } inline void pop(int k){ while(k--){ ]){ size[s[top][]] -= size[s[top][]]; fa[s[top][]] = s[top][]; } top--; } } int main(){ N = read(); M = read(); init(); scanf("%s",ss); ; i <= M ; i++){ ] == 'A'){ merge(read() , read() , i); cout << (s[top][] == N - ? s[top][] : 0ll) << '\n'; if(i == M) break; scanf("%s",ss); ] == 'R') pop(); } else ] == 'D'){ lasStep = read(); cout << (s[top - lasStep][] == N - ? s[top - lasStep][] : 0ll) << '\n'; if(i == M) break; scanf("%s",ss); ] != 'R') pop(lasStep); } else{ cout << (s[top][] == N - ? s[top][] : 0ll) << '\n'; if(i == M) break; scanf("%s",ss); } } ; }
UOJ14 DZY Loves Graph 并查集的更多相关文章
- UOJ_14_【UER #1】DZY Loves Graph_并查集
UOJ_14_[UER #1]DZY Loves Graph_并查集 题面:http://uoj.ac/problem/14 考虑只有前两个操作怎么做. 每次删除一定是从后往前删,并且被删的边如果不是 ...
- UOJ14 DZY Loves Graph
DZY开始有 nn 个点,现在他对这 nn 个点进行了 mm 次操作,对于第 ii 个操作(从 11 开始编号)有可能的三种情况: Add a b: 表示在 aa 与 bb 之间连了一条长度为 ii ...
- cf444E. DZY Loves Planting(并查集)
题意 题目链接 Sol 神仙题啊Orzzzzzz 考场上的时候直接把树扔了对着式子想,想1h都没得到啥有用的结论. 然后cf正解居然是网络流??出给NOIP模拟赛T1???¥%--&((--% ...
- 【UER #1】[UOJ#12]猜数 [UOJ#13]跳蚤OS [UOJ#14]DZY Loves Graph
[UOJ#12][UER #1]猜数 试题描述 这一天,小Y.小D.小C正在愉快地玩耍. 小Y是个数学家,他一拍脑袋冒出了一个神奇的完全平方数 n. 小D是个机灵鬼,很快从小Y嘴里套出了 n的值.然后 ...
- 学长小清新题表之UOJ 14.DZY Loves Graph
学长小清新题表之UOJ 14.DZY Loves Graph 题目描述 \(DZY\)开始有 \(n\) 个点,现在他对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 ...
- UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)
显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...
- 2019.01.22 uoj#14. 【UER #1】DZY Loves Graph(并查集)
传送门 题意简述: 要求支持以下操作: 在a与b之间连一条长度为i的边(i是操作编号):删除当前图中边权最大的k条边:表示撤销第 i−1次操作,保证第1次,第i−1 次不是撤回操作. 要求在每次操作后 ...
- [UER #1] DZY Loves Graph
题目描述 开始有 \(n\) 个点,现在对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 \(1\) 开始编号)有可能的三种情况: \(Add\) a b: 表示在 \ ...
- Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph 并查集
D. Mr. Kitayuta's Colorful Graph Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/ ...
随机推荐
- php使用PHPexcel类读取excel文件(循环读取每个单元格的数据)
error_reporting(E_ALL); date_default_timezone_set('Asia/ShangHai'); include_once('Classes/PHPExcel/I ...
- DB、ETL、DW、OLAP、DM、BI关系 ZT
在此大概用口水话简单叙述一下他们几个概念: (1)DB/Database/数据库——这里一般指的就是OLTP数据库,在线事物数据库,用来支持生产的,比如超市的买卖系统.DB保留的是数据信息的最新状态, ...
- 部署Redis(脚本安装)
部署Redis(脚本安装) #/bin/bash # DES:Redis Deploy # Author: will_xue # Email:linuxcto@aliyun.com # DATE : ...
- Nginx 反向代理工作原理简介与配置详解
Nginx反向代理工作原理简介与配置详解 by:授客 QQ:1033553122 测试环境 CentOS 6.5-x86_64 nginx-1.10.0 下载地址:http://nginx. ...
- 微信小程序-06-详解介绍.js 逻辑层文件-注册页面
上一篇介绍的是 app.js 逻辑层文件中注册程序,对应的每个分页面都会有的 js 文件中 page() 函数注册页面 微信小程序-06-详解介绍.js 逻辑层文件-注册页面 宝典官方文档: http ...
- recovery uncrypt功能解析(bootable/recovery/uncrypt/uncrypt.cpp)
我们通常对一个文件可以直接读写操作,或者普通的分区(没有文件系统)也是一样,直接对/dev/block/boot直接读写,就可以获取里面的数据内容了. 当我们在ota升级的时候,把升级包下载到cach ...
- python接口测试—post请求(二)
使用post请求登陆小极客网. 1.获取登陆接口,及用户名和密码参数 进入小极客网,先注册个账户,修改用户名和密码,然后点击登陆,打开debug调试-进入到network下 输入用户名和密码,点击登陆 ...
- python第七十一天---堡垒机
堡垒机的表结构图:
- SQL SERVER2008判断文件夹是否存在并创建文件夹
原文地址:https://www.cnblogs.com/iiwen/p/7650118.html DECLARE @PATH VARCHAR(255) --路径 DECLARE @DATE VARC ...
- udev和devfs的区别
devfs(设备文件系统)是由Linux2.4内核引入的,它的出现主要使得设备驱动程序能够自主管理自己的设备文件.具体来说,devfs具有如下优点: 可以通过程序在设备初始化时在/dev目录下创建设备 ...