传送门


既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到……)

设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1},N]\),那么我们选择出来的子段的异或和为\(x_{i_1} , x_{i_2}\ xor\ x_{i_1},...,x_{i_{k-1}}\ xor\ x_N\)。

又因为我们需要避免的是任意子段集合的异或和不为\(0\),那么将这些异或和互相异或对于这个命题是否成立不会产生影响。那么从第二项开始,每一项异或前面一项,就相当于我们选出来子段的异或和为\(x_{i_1},x_{i_2},...,x_{i_{k-1}} ,x_N\)。

也就是说我们需要从前缀和中取出尽可能多的数,保证\(x_N\)在其中且它们线性无关。直接线性基扫一遍就可以得到答案。注意如果\(x_N=0\)则直接无解。

#include<bits/stdc++.h>
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    while(!isdigit(c))
        c = getchar();
    while(isdigit(c)){
        a = a * 10 + c - 48;
        c = getchar();
    }
    return a;
}

const int MAXN = 2e5 + 10;
int N , cnt , num[MAXN] , xxj[32];

int main(){
    N = read();
    for(int i = 1 ; i <= N ; ++i)
        num[i] = read() ^ num[i - 1];
    if(num[N] == 0){
        puts("-1");
        return 0;
    }
    xxj[(int)log2(num[N] + 0.5)] = num[N];
    cnt = 1;
    for(int i = 1 ; i < N ; ++i)
        while(num[i]){
            int t = (int)log2(num[i] + 0.5);
            if(xxj[t])
                num[i] ^= xxj[t];
            else{
                ++cnt;
                xxj[t] = num[i];
                break;
            }
        }
    cout << cnt << endl;
    return 0;
}

CF1101G (Zero XOR Subset)-less 线性基的更多相关文章

  1. CodeForces - 1101G :(Zero XOR Subset)-less(线性基)

    You are given an array a1,a2,…,an of integer numbers. Your task is to divide the array into the maxi ...

  2. CF1101G (Zero XOR Subset)-less

    题目地址:CF1101G (Zero XOR Subset)-less 线性基基础题 预处理一个前缀异或和 \(s_i\) 这样题目就变成了:在 \(n\) 个 \(s_i\) 中尽量选择多的数使选择 ...

  3. (Zero XOR Subset)-less-线性基

    (Zero XOR Subset)-less 题意 :把n个数分成多个集合,要求 不能有集合为空,最终不能有非空子集合异或值为0,尽可能划分的多一些. 思路 :非法情况就只有 n个数异或 为0,其他的 ...

  4. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  5. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  6. 牛客练习赛26 D xor序列 (线性基)

    链接:https://ac.nowcoder.com/acm/contest/180/D 来源:牛客网 xor序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他 ...

  7. [luogu4151 WC2011] 最大XOR和路径 (线性基)

    传送门 输入输出样例 输入样例#1: 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 输出样例#1: 6 说明 [样例说明] 根据异或的性质,将一个数异或两 ...

  8. 2019年牛客多校第四场 B题xor(线段树+线性基交)

    题目链接 传送门 题意 给你\(n\)个基底,求\([l,r]\)内的每个基底是否都能异或出\(x\). 思路 线性基交板子题,但是一直没看懂咋求,先偷一份咖啡鸡板子写篇博客吧~ 线性基交学习博客:传 ...

  9. 2019牛客多校第四场B xor——线段树&&线性基的交

    题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...

随机推荐

  1. 随机x到x之间的值

    function rand(max, min){ return Math.floor(Math.random()*(max-min+1)+min) }

  2. SuperMap iServer 扩展/JAVA API 系列博客整理

    转载:http://blog.csdn.net/supermapsupport/article/details/70158940 SuperMap iServer为广大用户提供了整套 SDK,应用开发 ...

  3. java代码代替xml实现图片

    1.使用StateListDrawable替换selector public static StateListDrawable getSelector(Drawable normalDrawable, ...

  4. 前端限制input输入框(只能输入正整数)

    <input onkeyup="if(this.value.length==1){this.value=this.value.replace(/[^1-9]/g,'')}else{th ...

  5. python第九十五天--js正则

    定义正则表达式 /.../ 用于定义正则表达式 /.../g 表示全局匹配 /.../i 表示不区分大小写 /.../m 表示多行匹配 JS正则匹配时本身就是支持多行,此处多行匹配只是影响正则表达式^ ...

  6. SQL Server 2017数据库服务和SSMS图形化工具的的安装

    第一章 SQL数据库服务的安装 1. 首先要加载sql2017数据库镜像,可以用虚拟光驱或是刻录光盘装载.执行setup.exe. 双击.exe文件 双击.exe文件 2. 选择安装-->全新s ...

  7. [HDFS_4] HDFS 的 Java 应用开发

    0. 说明 在 IDEA下 进行 HDFS 的 Java 应用开发 通过编写代码实现对 HDFS 的增删改查操作 1. 流程 1.1 在项目下新建 Moudle 略 1.2 为 Moudle 添加 M ...

  8. P进制转Q进制

    // 对一个P进制的数,如果要转换成Q进制的数 // 1)将P进制数x转换成十进制数y int y=0,product=1;//product在循环中会不断成P,得到1.P^2..... while( ...

  9. linux 下正则匹配时间命名格式的文件夹

    用正则表达式匹配时间格式命名的文件夹 ls mypath | grep -E "[0-9]{4}-[0-9]{1,2}" mypath为需要查询的目录 查询出来的文件夹格式为:例 ...

  10. Orcale的NVL、NVL2函数和SQL Server的ISNULL函数

    Orcal 的 nvl函数 NVL(Expr1,Expr2)如果Expr1为NULL,返回Expr2的值,否则返回Expr1的值,Expr1,Expr2都为NULL则返回NULL NVL2(Expr1 ...