极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。

一、极大似然估计的思想与举例

举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽到白球的概率可能为0.7或者0.3,但不清楚,现在抽取三次,三次都没有抽到白球,请问盒子中一次抽到白球的概率是多少?

这类栗子有一个共性,我们假设白球的概率为p,然后用它去计算已知发生的事情“三次都是黑球”使其发生的概率最大。已知p可能取值为0.7或者0.3,那我们两个值分别计算三次抽取为黑球的概率,谁的概率大我们就认为p的概率是多少。

p=0.3时,三次为黑球的概率 P = 0.7*0.7*0.7 = 0.342

p=0.7时,三次为黑球的概率 P = 0.3*0.3*0.3 = 0.027

可见p为0.3时事件三次抽取都为黑球发生的概率最大,所以我们认为盒子中取到白球的概率的极大似然估计为0.3。

再举个栗子:有两个男孩和一个女孩,已知两男孩中其中一个与女孩是兄妹,经过观察发现男孩A与女孩有点像,男孩B与女孩不像,那我们就会猜测男孩A和女孩是兄妹。

这就是用到了极大似然估计的思想,即忽略低概率,认为高概率的为真实事件,或者去估计真实事件。

对于连续的问题,还是上面的小球例子,如果取到白球的概率为一个区间值[0.3, 0.7]。

求解:假设取到取到白球概率为p,则三次都为黑球的事件概率

P = (1-p)^3

P对p求导得:P' = -3(1-p)^2

令P' = 0,得p = 1,  因为 p 在[0.3, 0.7]之间,p<1时,P' < 0, 故在 p < 1区间内,函数P单调递减,所以p = 0.3时,P取到最大值。即事件发生的可能性最大,所以白球概率的极大似然估计为0.3。

二、总结

通过以上的分析,可以得出极大似然估计的通常解法,总体来说分为以下几步:
1、得到所要求的极大似然估计的概率p的范围
2、以p为自变量,推导出当前已知事件的概率函数式Q(p)
3、求出能使得Q(p)最大的p
这样便求出了极大似然估计值p

理解极大似然估计(MLE)的更多相关文章

  1. 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

    目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...

  2. 浅议极大似然估计(MLE)背后的思想原理

    1. 概率思想与归纳思想 0x1:归纳推理思想 所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.抽象地来说,由个别事实概括出一般结论的推理称为归纳推 ...

  3. 机器学习(二十五)— 极大似然估计(MLE)、贝叶斯估计、最大后验概率估计(MAP)区别

    最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参 ...

  4. 从极大似然估计的角度理解深度学习中loss函数

    从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...

  5. MLE极大似然估计和EM最大期望算法

    机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...

  6. 数理统计7:矩法估计(MM)、极大似然估计(MLE),定时截尾实验

    在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法.今天我们将讨论常用的点估计方法:矩估计.极大似然估计,它们各有优劣,但都很重要.由于本 ...

  7. 极大似然估计(MLE)

    基本思想 模型已定,参数未知 根据已存在的样本,挑选(求出)能让样本以最大概率发生的参数 极大似然估计和最小二乘法最大区别之一 极大似然需要知道概率密度函数(离散型叫分布律) 若总体X属离散型,其分布 ...

  8. (转载)极大似然估计&最大后验概率估计

    前言 不知看过多少次极大似然估计与最大后验概率估计的区别,但还是傻傻分不清楚.或是当时道行太浅,或是当时积累不够. 这次重游机器学习之路,看到李航老师<统计学习方法>中第一章关于经验风险最 ...

  9. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

随机推荐

  1. BeanUtils.copyProperties的简单示例

    一.新建测试实体 1.UserA package com.dechy.hebswj.test; public class UserA { private String a; private Strin ...

  2. Linux mail 查看

    Linux 下查看mail的命令参数: 一般系统收到邮件都会保存在“/var/spool/mail/[linux username]"文件中,在Linux中输入mail,就进入了收件箱,并显 ...

  3. java多线程系列6 synchronized 加强版 ReentrantLock

    ReentrantLock类是可重入.互斥.实现了Lock接口的锁,它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力.ReenreantLock类的常用方法有: Re ...

  4. nginx:location指令中的正则表达式

    nginx:location指令中的正则表达式 uri匹配步骤 官网说明https://docs.nginx.com/nginx/admin-guide/web-server/web-server/ ...

  5. IT资产管理—采购与合同管理功能

  6. addEventListener()方法

    ★JS事件的捕获阶段和冒泡阶段: 讨论的主要是两个事件模型:IE事件模型与DOM事件模型 IE内核浏览器的事件模型是冒泡型事件(没有捕获事件过程),事件句柄的触发顺序是从ChildNode到Paren ...

  7. 高效率php注意事项

    1.尽量静态化: 如果一个方法能被静态,那就声明它为静态的,速度可提高1/4,甚至我测试的时候,这个提高了近三倍. 当然了,这个测试方法需要在十万级以上次执行,效果才明显. 其实静态方法和非静态方法的 ...

  8. CCNA笔记

    *****************交换机********************一:交换机:具有多个交换端口,专用集成电路技术使得交换器以线路速率在所有的端口并行转发数据,有很高的总体吞吐率;虚拟网V ...

  9. WeexSDK之注册Modules

    注册Modules的流程和注册Components非常类似. + (void)_registerDefaultModules { [self registerModule:@"dom&quo ...

  10. vscode调试angular

    之前在Asp.net MVC + Angular1 的项目中,要调试前台代码都是用浏览器的开发者工具,使用正常,也没有感觉太大的不方便. 后来接触Angular2项目,因为它是要经过编译的,所以在浏览 ...