洛谷 P3367 并查集模板
#include<cstdio>
using namespace std;
int n,m,p;
int father[];
int find(int x)
{
if(father[x]!=x)
father[x]=find(father[x]);
return father[x];
}
void unionn(int i,int j)
{
father[j]=i;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
father[i]=i;
for(int i=;i<=m;i++)
{
int x,y,z,r1,r2;
scanf("%d%d%d",&z,&x,&y);
if(z==)
{
r1=find(x);
r2=find(y);
if(r1!=r2)
unionn(r1,r2);
}
if(z==)
{
if(find(x)==find(y))
printf("Y\n");
else printf("N\n");
}
} return ;
}
洛谷的网站编排对题目粘贴不友好,所以没题目
链接在这:https://www.luogu.org/problem/show?pid=3367
洛谷 P3367 并查集模板的更多相关文章
- 洛谷 P3367 并查集 【模板题】
题目描述 如题,现在有一个并查集,你需要完成合并和查询操作. 输入输出格式 输入格式: 第一行包含两个整数N.M,表示共有N个元素和M个操作. 接下来M行,每行包含三个整数Zi.Xi.Yi 当Zi=1 ...
- 洛谷P3367并查集
传送门 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...
- P1536 村村通(洛谷)并查集
隔壁的dgdger带我看了看老师的LCA教程,我因为学习数学太累了(就是懒),去水了一下,感觉很简单的样子,于是我也来写(水)个博客吧. 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列 ...
- 洛谷 P3367 【模板】并查集
P3367 [模板]并查集 题目描述 如题,现在有一个并查集,你需要完成合并和查询操作. 输入输出格式 输入格式: 第一行包含两个整数N.M,表示共有N个元素和M个操作. 接下来M行,每行包含三个整数 ...
- 【并查集模板】 【洛谷P2978】 【USACO10JAN】下午茶时间
P2978 [USACO10JAN]下午茶时间Tea Time 题目描述 N (1 <= N <= 1000) cows, conveniently numbered 1..N all a ...
- HDU 1213 How Many Tables(并查集模板)
http://acm.hdu.edu.cn/showproblem.php?pid=1213 题意: 这个问题的一个重要规则是,如果我告诉你A知道B,B知道C,这意味着A,B,C知道对方,所以他们可以 ...
- 洛谷 P4148 简单题 KD-Tree 模板题
Code: //洛谷 P4148 简单题 KD-Tree 模板题 #include <cstdio> #include <algorithm> #include <cst ...
- 【2018寒假集训Day 8】【并查集】并查集模板
Luogu并查集模板题 #include<cstdio> using namespace std; int z,x,y,n,m,father[10001]; int getfather(i ...
- POJ-图论-并查集模板
POJ-图论-并查集模板 1.init:把每一个元素初始化为一个集合,初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变). void init() { for ...
随机推荐
- PXC安装部署
安装依赖与注意事项: 1. rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm 1 ...
- Luogu4240 毒瘤之神的考验 莫比乌斯反演、根号分治
传送门 首先有\(\varphi(ij) = \frac{\varphi(i) \varphi(j) \gcd(i,j)}{\varphi(\gcd(i,j))}\),把欧拉函数的定义式代入即可证明 ...
- charles4.0 request和response的显示设置
点击右上角的设置按钮 点击preferences 切换到viewers,取消勾选Combine request and response,点击保存即可
- IIS配置文件的XML格式不正确 applicationHost.config崩溃
错误提示如图: 检查C:\Windows\System32\inetsrv\config目录下的applicationHost.config文件,备份一份. 可使用IIS提供的AppCmd.exe的r ...
- C# vb .net实现移除透明度效果
在.net中,如何简单快捷地实现Photoshop滤镜组中的移除透明度效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 ...
- Socket HttpListen
HttpListener sSocket = new HttpListener(); sSocket.Prefixes.Add("http://127.0.0.1:8080/"); ...
- python3--说简单也不简单的排序算法
在刚开始接触算法时,我们可能一脸懵,不知从何处下手,尤其是现在使用的语言五花八门,各种语言的实现又不尽相同,所以,在这种情况下,千万不能迷失了自己,掌握了算法的原理,就像解数学公式一样,定理给你了,仔 ...
- vue 关于子组件向父组件传值$emit触发无效问题
先贴上代码 子组件代码 //子组件请求接口,用自己封装的axios getupdate(){ this.$post({ url:this.$apis.unitupdate, postType:'jso ...
- 装饰器带类参数 & 一个函数应用多个装饰器
装饰器:不改变原函数的基础上,给函数增加功能的方式,称为装饰器 即:为已经存在的对象添加额外的功能 装饰器其实就是一个闭包,把一个函数当做参数后返回一个替代版的函数 decos.py:(装饰器的参数类 ...
- 深入理解React 组件状态(State)
React 的核心思想是组件化的思想,应用由组件搭建而成,而组件中最重要的概念是State(状态),State是一个组件的UI数据模型,是组件渲染时的数据依据. 一. 如何定义State 定义一个合适 ...