自闭集训 Day6

计算几何

内积

内积不等式:
\[
(A,B)^2\le (A,A)(B,B)
\]
其中\((A,B)\)表示\(A\cdot B\)。

(好像是废话?)

叉积

\[
A\times B=|A||B|\sin \theta
\]

二维叉积:\(A\times B=x_1y_2-x_2y_1\)。

三维叉积:
\[
A\times B=\left|
\begin{matrix}
i&j&k\\
Ax&Ay&Az\\
Bx&By&Bz
\end{matrix}
\right|
\]
叉积判直线关系:??

极角

atan2(y,x),返回值\((-\pi,\pi]\)。

如果极角相差较大可以用这个来判,否则由于精度问题可能要用叉积。在值域\(10^9\)的时候这个函数可能基本没用。

旋转

向量的旋转,直接用三角函数公式推一推即可,可以写成矩阵的形式。

经典题

每时刻有旋转/平移/缩放等操作,问一个向量在\([l,r]\)中操作之后会变成什么。

直接写成矩阵乘法的形式,用线段树维护。

Simpson积分

对于二次函数\(f(x)\),有
\[
\int_{x=l}^r f(x)\mathrm dx=\frac{(r-l)(f(l)+f(r)+4f((l+r)/2))}{6}
\]
对于其他函数,可以用二次函数拟合。

Projection

求\(P\)在直线\(P_1P_2\)上的投影点/对称点。

直接把直线\(P_1P_2\)的垂线做出来,求个交,就没了。

也可以用点积得到\(PP_1\)在\(P_1P_2\)上的投影长度,然后也可以求出垂足。

向量的位置关系

直接点积叉积乱搞一通就没了。

直线的位置关系、线段的位置关系都差不多。

线段是否相交

先把直线平行、直线重合判掉。

然后分别把两条线段的端点取出来,看是否在另一条直线的两边。

(老师给的方法:先判外接矩形是否相交,然后再做跨立实验)

线段交点

把直线重合判掉,然后当成直线来求交点。

线段之间距离

距离定义为最近点对的距离。

如果有交点则为0,否则变成点到线段距离。

点到线段距离?点积判一下端点之间位置关系然后直接做。

多边形面积

不保证多边形是凸的。

直接在二维平面上随便选一个点然后叉积。

判凸包

直接叉积就没了。

判点在多边形内

射线法大家都知道,但有很多恶心的边界情况。

两种方法:

第一种:把斜率设成一个奇怪的无理数,多半可以跳过所有边界情况。

第二种:钦定射线向右,把所有边界情况都判了就完事了。

边界:

  1. 如果射线与边重合那么continue
  2. 如果穿过了\(AB\)的\(A\),而且\(AB\)向下,那么计数器++。
  3. 如果穿过了\(AB\)的\(B\),而且\(AB\)向上,那么计数器++。
  4. 如果点在边上那么直接返回。

求凸包

大家都会?

求凸包直径

旋转卡壳。

求凸包在射线左边的面积

把有关的点抠出来,仍然是一个凸包,然后算面积即可。

平面最近点对距离

K-D Tree多好

分治,然后发现左边匹配右边只会有\(O(1)\)个点有可能产生贡献,于是没了。

圆的关系

相离,外切,相交,内切,内含。

圆心和半径的关系乱搞即可。

求圆和直线的交点

知道半径、知道圆心到直线的距离,于是可以得到弦长,于是没了。

求两个圆的交点

可以求出交点的直线方程,于是没了。

当然,也可以用余弦定理解三角形得到答案。

点到圆的切点

知道半径、知道距离、知道有一个直角,于是可以解三角形。

两个圆的公切线

首先判掉内含、内切。

此时必然有两条外公切线,解一解三角形。

内公切线类似。

求圆和多边形交的面积

可以通过有向面积化成三角形和圆的交的面积。注意到三角剖分的原点任意,可以设为圆心。

如果三个点都在里面那么很容易。

否则就把线段\(AB\)与圆的交点搞出来,把三角形切开,递归搞。

只会递归常数层,但比较好写。

bzoj1043

直接暴力,对于每个圆盘求出后面的圆盘盖掉它的角度区间,求个区间并就没了。

角度区间可以求圆的交点来求。

CF932F

设\(dp_x\)表示从\(x\)跳到某个叶子的最小代价,从下往上DP。

每次求\(x\)的答案的时候发现就是一个斜率优化,启发式合并把子树内的凸包合起来就没了。

DSU on tree维护凸包也可以。

然后就是要支持往凸包里插入一个点,拿set乱搞即可。

某题

发现最多选4个向量,而且选4个向量的时候只能是互相垂直的,可以判掉。于是只要选3个向量,使得相邻两个向量的夹角小于180。

然后把所有向量反向再加进去,正向的设为红色,反向的设为绿色。

于是我们就要找形如“红绿红”的三条向量,并且两个红向量的夹角小于180。

枚举第一个红向量,数据结构维护后面两个的最小值。

CF1025F

结论:三角形不相交等价于能做出两条内公切线。

然后枚举一条公切线,答案就是公切线两边分别选两个点的方案数。

bzoj2961

圆反演,点在圆内转化为点在直线的某一侧。

于是变成动态半平面交,也许可以转化为凸包做?

圆反演

对于一个点\(P\),如果\(P\)对\(O\)反演,那么\(P\)仍然在射线\(OP\)上,距离变为原来的倒数。

一条不过\(O\)的直线反演后变成一个过\(O\)的圆,反之亦然。

不过\(O\)的圆反演后仍然是不过\(O\)的圆。

HDU4773

圆反演,就变成了求两个圆的某个特定公切线。(注意原题需要外切,所以不能乱搞公切线)

Codechef QPOINT

注意“不相交”也保证了两个多边形不能相互包含。

考虑射线法,看一个点往上对着的第一个线段,如果是从右往左那么就在多边形外,否则在多边形内。(假设边是按顺时针走的)

如果可以离线,那么按\(x\)排序一下从左往右搞,因为没有相交的边,所以用set很好维护。

不能离线,那么用可持久化treap维护。

细节很多,也许旋转某个无理数角度会有点用?

CF704E

树剖,把树上的问题转化为序列上的问题。

以时间为\(x\)轴、位置\(y\)轴,那么一次位移就是二维平面的一条线段。

问题就转化为\(m\log n\)条线段什么时候最早相交。

按\(x\)坐标扫描线,用\(set\)维护所有线段的\(y\)的相对大小关系。

如果两条线段有交,那么他们一定会有某个时刻在set里是相邻的。

又因为我们只需要求最早的交点,所以我们可以认为set里面的线段永远不相交,因为当我们跑到相交的时间的时候就要直接返回答案了。

于是每次加入一条线段的时候判一下和前驱后继相交的时间,更新一下结束时间。如果当前时间超出了结束时间那么就可以直接返回了。

CF799G

设\(f(x)\)表示极角为\(x\)的射线左边面积减去右边面积,那么有\(f(0)=-f(\pi)\)。

所以中间必然存在零点,可以二分这个零点。

考虑二分了一个极角之后怎么求\(f(x)\)。可以使用二分得到这条射线与凸包的各种交点,然后用各种前缀和得到面积,所以可以\(O(\log n)\)得到\(f(x)\)。

所以我们\(O(n\log^2 n)\)做出了答案。

(听起来细节就特别特别多……)

2019暑期金华集训 Day6 计算几何的更多相关文章

  1. 2019暑期金华集训 Day6 杂题选讲

    自闭集训 Day6 杂题选讲 CF round 469 E 发现一个数不可能取两次,因为1,1不如1,2. 发现不可能选一个数的正负,因为1,-1不如1,-2. hihoCoder挑战赛29 D 设\ ...

  2. 2019暑期金华集训 Day7 分治

    自闭集训 Day7 分治 主定理 由于我沉迷调题,这个地方没听课. 某些不等式 咕了 nth_element 使用快速排序的思想,选一个中间点,看左右有多少个. 期望复杂度\(O(n)\). 首先把一 ...

  3. 2019暑期金华集训 Day7 动态规划

    自闭集训 Day7 动态规划 LOJ6395 首先发现这个树的形态没啥用,只需要保证度数之和是\(2n-2\)且度数大于0即可. 然后设\(dp_{i,j}\)表示前\(i\)个点用了\(j\)个度数 ...

  4. 2019暑期金华集训 Day5 树上数据结构

    自闭集训 Day5 树上数据结构 前置知识 点分治 边分治 树链剖分 LCT Top Tree LCT时间复杂度 线段树每次查询是严格\(\log n\)的,然而splay维护连续段的时候,如果每次查 ...

  5. 2019暑期金华集训 Day5 生成函数

    自闭集训 Day5 生成函数 一般生成函数 无脑地把序列变成多项式: \[ \{a_i\}\rightarrow A(x)=\sum_{n} a_nx^n \] 形式幂级数 生成函数是一种形式幂级数. ...

  6. 2019暑期金华集训 Day3 字符串

    自闭集训 Day3 字符串 SAM 考虑后缀树. SAM的parent树是反串的后缀树,所以后面加一个字符的时候相当于往串前面加一个字符,恰好多出了一个后缀. 于是可以以此来理解SAM. 每一条路径对 ...

  7. 2019暑期金华集训 Day3 图论

    自闭集训 Day3 图论 NOI2019 D2T1 没有真正建出图来的必要,可以直接打取\(\min\)的\(tag\). 也可以把边压进堆里,然后变成一个二维清点问题(???),然后就线段树+并查集 ...

  8. 2019暑期金华集训 Day2 线性代数

    自闭集训 Day2 线性代数 高斯消元 做实数时,需要找绝对值最大的作为主元,以获取更高精度. 在欧几里得环(简单例子是模合数)意义下也是对的.比如模合数意义下可以使用辗转相除法消元. 欧几里得环:对 ...

  9. 2019暑期金华集训 Day1 组合计数

    自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le ...

随机推荐

  1. docker查看容器日志

    原文:docker查看容器日志 前言 $ sudo docker logs -f -t --tail 行数 容器名 1 2 1.命令查看 root@c68d4b5dd583c4f4ea30da2989 ...

  2. MongoDB 增删改查 Shell使用及操作

    下载链接:https://robomongo.org/download 安装步骤省略,下一步下一步... 图形界面,连接默认,取个名字就行. 连接成功,可以愉快的使用了,不用总是敲命令了,简洁方便,多 ...

  3. 关于Java无法解码(ajax编码 Java解码)

    今天遇到了一个非常奇~~~~~~葩的问题,无解! 一向前端碰到中文,请求都使用encodeURI(encodeURI("中文"))编码,然后后端使用URLDecoder.decod ...

  4. python实现scp功能

    最近公司有一个需求,需要把服务器A上的任务放到服务器B上,因为B上有HTTP,并且可以被外网访问,但是直接通过shell的scp,每次都需要输入密码.这里用python简单实现一下 直接上代码: im ...

  5. FireWolf OS X PE

    FireWolf OS X PE FireWolf OS X PE 9 使用手册   https://pe.firewolf.app/manual/ https://pe.firewolf.app/m ...

  6. C++项目链接出错, error LNK2019: 无法解析的外部符号 __imp_xxxx_Allocate,该符号在函数 "xxxx" (xxxx) 中被引用

    1 错误提示 error LNK2019: 无法解析的外部符号 __imp_FreeImage_Allocate,该符号在函数 "public: bool __cdecl colmap::B ...

  7. Java关于 class类的基础方法

    Class类的方法 1. getClasses 和 getDeclaredClasses getDeclaredClasses 获取到类里所有的的class ,interface 包括了private ...

  8. python爬虫 urllib模块url编码处理

    案例:爬取使用搜狗根据指定词条搜索到的页面数据(例如爬取词条为‘周杰伦'的页面数据) import urllib.request # 1.指定url url = 'https://www.sogou. ...

  9. [AIR] NativeExtension在IOS下的开发实例 --- IOS项目的创建 (一)

    来源:http://bbs.9ria.com/thread-102037-1-1.html 最近看到本版块的很多关于NativeExtension的应用.但是都是在Android下面的应用.也有很多朋 ...

  10. SpringBoot+SpringCloud+vue+Element开发项目——搭建开发环境

    1.新建一个项目