题目链接:https://vjudge.net/problem/POJ-1847

思路:想从A到B使用开关少,想清楚了就是个简单的最短路,可以把不用开开关为权值0,

要开开关为权值1,就是求A到B开开关最少的次数,题目说了,每行第一个点是第 i-th点和他正好数开关开的方向连接。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <string>
#include <map>
#include <cmath>
#include <iomanip>
using namespace std; typedef long long LL;
#define inf 1e9
#define rep(i,j,k) for(int i = (j); i <= (k); i++)
#define rep__(i,j,k) for(int i = (j); i < (k); i++)
#define per(i,j,k) for(int i = (j); i >= (k); i--)
#define per__(i,j,k) for(int i = (j); i > (k); i--) const int N = ;
int head[N];
bool vis[N];
int dis[N];
int cnt;
int n,s,t; struct Edge{
int to;
int w;
int next;
}e[N * N]; struct node{
int pos;
int w; bool friend operator< (const node& a,const node& b){
return a.w > b.w;
}
}; void add(int u,int v,int w){
e[cnt].to = v;
e[cnt].w = w;
e[cnt].next = head[u];
head[u] = cnt++;
} void dijkstra(){ rep(i,,n) vis[i] = false;
rep(i,,n) dis[i] = inf;
dis[s] = ; priority_queue<node> que;
que.push(node{s,}); int pos,v,w;
while(!que.empty()){
pos = que.top().pos;
que.pop(); if(vis[pos]) continue;
vis[pos] = true; for(int o = head[pos]; ~o; o = e[o].next){
v = e[o].to;
w = e[o].w; if(!vis[v] && dis[pos] + w < dis[v]){
dis[v] = dis[pos] + w; que.push(node{v,dis[v]});
}
}
} if(dis[t] == inf) cout << "-1" << endl;
else cout << dis[t] << endl;
} int main(){ scanf("%d%d%d",&n,&s,&t); rep(i,,n) head[i] = -;
int cnt = ; int tot,v;
rep(u,,n){
cin >> tot; rep(i,,tot){
cin >> v; if(i == ) add(u,v,);
else add(u,v,);
}
}
dijkstra(); getchar(); getchar();
return ;
}

Tram POJ - 1847的更多相关文章

  1. Day4 - L - Tram POJ - 1847

    Tram network in Zagreb consists of a number of intersections and rails connecting some of them. In e ...

  2. Tram POJ - 1847 spfa

    #include<iostream> #include<algorithm> #include<queue> #include<cstdio> #inc ...

  3. POJ 1847 Tram (最短路径)

    POJ 1847 Tram (最短路径) Description Tram network in Zagreb consists of a number of intersections and ra ...

  4. 最短路 || POJ 1847 Tram

    POJ 1847 最短路 每个点都有初始指向,问从起点到终点最少要改变多少次点的指向 *初始指向的那条边长度为0,其他的长度为1,表示要改变一次指向,然后最短路 =========高亮!!!===== ...

  5. poj 1847 最短路简单题,dijkstra

    1.poj  1847  Tram   最短路 2.总结:用dijkstra做的,算出a到其它各个点要改向的次数.其它应该也可以. 题意: 有点难懂.n个结点,每个点可通向ki个相邻点,默认指向第一个 ...

  6. poj 1847 Tram

    http://poj.org/problem?id=1847 这道题题意不太容易理解,n个车站,起点a,终点b:问从起点到终点需要转换开关的最少次数 开始的那个点不需要转换开关 数据: 3 2 1// ...

  7. [最短路径SPFA] POJ 1847 Tram

    Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14630 Accepted: 5397 Description Tra ...

  8. POJ 1847 Tram (最短路)

    Tram 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/N Description Tram network in Zagreb ...

  9. poj 1847 Tram【spfa最短路】

    Tram Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12005   Accepted: 4365 Description ...

随机推荐

  1. SQL Server 迁移数据库 (二)分离和附加

    分离和附加其实比导入和导出,步骤要少一些,但是数据量大的话,跨服务器拷贝数据文件可能要慢一些 1. 分离数据库 这里最好选择断开链接,断开之前要确保你记得数据库的路径,一般默认都是C:\Program ...

  2. Java Scala获取所有注解的类信息

    要想获取使用指定注解的类信息,可借助工具: org.reflections.Reflections 此工具将Java反射进行了高级封装,Reflections 通过扫描 classpath,索引元数据 ...

  3. Jenkins使用过程中遇到的问题

    1./usr/local/jdk1.8.0_191/ is not a directory on the Jenkins master (but perhaps it exists on some a ...

  4. docker搭建php环境

    前言 本文根据参考文章,自己动手试了搭建PHP环境,对里面的Dockerfile的编写 做了最新的修改,以此记录,完整代码查看传送门 说明: 镜像下载过慢,可使用国内镜像加速,具体可自行查询 根据此方 ...

  5. 标签一致项(LC-KSVD)-全文解读

    Learning A Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD 1,同步学习判决字典和线性分类器 2 ...

  6. vertica单节点故障恢复 Startup Failed, ASR Required

    测试环境的vertica是单节点的,无法做到故障自动恢复,需要手工处理.案例如下: 发现5433端口连接不上,vertica挂了,手工运行admintools,重新启动vertica,仍然失败,提示: ...

  7. 算法(贪心|BF|KMP)

    贪心算法 前置知识 const Greedy = num => { //贪心 let arr = [100, 20, 10, 5, 2, 1] let count = 0; for (let i ...

  8. python的深浅拷贝-成为马老师的弟子

    参考链接 骏马金龙 前提 想要了解深浅拷贝之前必须要知道可变和不可变类型,和他们的特性 不可变类型 数字 字符串 元组 不可变集合 特性:改变值,会创建新的内存空间存储数据 可变类型 列表 字典 可变 ...

  9. Shiro 使用 JWT Token 配置类参考

    项目中使用了 Shiro 进行验证和授权,下面是 Shiro 配置类给予参考. 后来并没有使用 Shiro,感觉使用 JWT 还是自己写拦截器比较灵活,使用 Shiro 后各种地方需要魔改,虽然功能也 ...

  10. 单点登录(sso)入门

    单点登录的英文名叫做Single Sign On,简称SSO. 在以前,一般我们就单系统,所有的功能都在同一个系统上. 后来,我们为了合理利用资源和降低耦合性,于是把单系统拆分成多个子系统. 比如阿里 ...