luoguP3327 [SDOI2015]约数个数和
题意
首先有个结论:
\(d(i,j)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)
证明:
假设\(i=p_1^{a_1}*p_2^{a_2}*...*p_k^{a_k},j=p_1^{b_1}*p_2^{b_2}*...*p_k^{b_k}\),则\(i*j=p_1^{a_1+b_1}*p_2^{a_2+b_2}*...*p_k^{a_k+b_k}\)
考虑第\(i\)个质因子\(p_i\),如果\(x,y\)互质,则\(x,y\)只能有一个有\(p_i\),x有是\(a_i\)种,\(y\)有是\(b_i\)种,都没有是1种,总共\((a_i+b_i+1)\)种,与约数个数和公式中相符。
于是式子变为:
\(\sum\limits_{i=1}^n\sum\limits_{j=1}^{m}\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\)
改为枚举\(x,y\):
\(\sum\limits_{x=1}^{n}\sum\limits_{y=1}^m[\gcd(x,y)=1]*\frac{n}{x}*\frac{m}{y}\)
设\(f(x)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^m\frac{n}{i}*\frac{m}{j}*[\gcd(i,j)=x],F(x)=\sum\limits_{n|d}f(d)\)
则:
\(F(x)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{n}{i}*\frac{m}{j}*[x|\gcd(i,j)]\)
提出\(x\):
\(F(x)=\sum\limits_{i=1}^{\frac{n}{x}}\sum\limits_{j=1}^{\frac{m}{x}}\frac{n}{i*x}*\frac{m}{j*x}*[1|\gcd(i,j)]\)
即:
\(F(x)=\sum\limits_{i=1}^{\frac{n}{x}}\sum\limits_{j=1}^{\frac{m}{x}}\frac{n}{i*x}*\frac{m}{j*x}\)
莫比乌斯反演:
\(f(x)=\sum\limits_{x|d}\mu(\frac{d}{x})F(x)\)
\(ans=f(1)=\sum\limits_{1|d}\mu(\frac{d}{1})F(d)\)
\(=\sum\limits_{d=1}^{min(n,m)}\mu(d)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}\frac{n}{i*d}*\frac{m}{j*d}\)
预处理\(g(x)=\sum\limits_{i=1}^{x}\frac{x}{i}\),并求出莫比乌斯函数的前缀和\(sum_i\),后面那一部分显然可以除法分块。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5*1e4+10;
int T,n,m;
int mu[maxn],sum[maxn];
ll g[maxn];
bool vis[maxn];
vector<int>prime;
inline void shai(int n)
{
vis[1]=1;mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i])prime.push_back(i),mu[i]=-1;
for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+mu[i];
for(int i=1;i<=n;i++)
for(int l=1,r;l<=i;l=r+1)
r=i/(i/l),g[i]+=1ll*(r-l+1)*(i/l);
}
inline ll solve(int n,int m)
{
ll res=0;
for(int l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),m/(m/l));
res+=1ll*(sum[r]-sum[l-1])*g[n/l]*g[m/l];
}
return res;
}
int main()
{
shai(50000);
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",solve(n,m));
}
return 0;
}
luoguP3327 [SDOI2015]约数个数和的更多相关文章
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
- P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- 洛谷 [SDOI2015]约数个数和 解题报告
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...
- BZOJ 3994: [SDOI2015]约数个数和
3994: [SDOI2015]约数个数和 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 898 Solved: 619[Submit][Statu ...
- 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演
[BZOJ3994][SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...
- 洛谷P3327 - [SDOI2015]约数个数和
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
随机推荐
- 10.7 csp-s模拟测试63 Median+Game+Park
我堕落了 我觉得任牛逼的问题也是我的问题 T1 Median T2 Game T3 Park
- Paper | A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC
目录 精彩叙述 细节 发表在2017年DCC. 这篇文章立意很简单,方法也很简单,但是做得早.效果好.引用量也不错(40+). 指标:在HEVC的intra.LDP.LDB和RA模式下,BDBR平均可 ...
- WIFI Portal登录
开头 关于 ANDROID 5.0-7.1.2 网络图标上的感叹号及其解决办法-狐狸的小小窝 HTTP状态码之204 No Content 原理 访问generate_204地址,如果得到状态码是20 ...
- 剑指offer:矩阵中的路径(递归回溯法DFS类似迷宫)
1. 题目描述 /* 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径. 路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子. 如果一条 ...
- List集合分组实现教程
封装一个方法,用一个Map来实现,这里是根据bean类的seq字段进行拆分的,分成好几个list private LinkedHashMap<String,List<HandleInfo& ...
- redis之漏斗限流
Redis 4.0 提供了一个限流 Redis 模块,它叫 redis-cell.该模块也使用了漏斗算法,并提供了原子的限流指令.有了这个模块,限流问题就非常简单了.
- jdk-8u151-nb-8_2-windows-x64软件安装教程及环境配置
1.双击jdk-8u151-windows-x64.exe文件 2.进入安装向导 3.配置环境变量 (1)计算机→属性→高级系统设置→高级→环境变量 (2)系统变量→新建 JAVA_HOME 变量 . ...
- HTTP Error 502.5 - ANCM Out-Of-Process Asp.Net Core发布到IIS失败
问题概述 asp.net core网站发布到windows server 2012r2 IIS后,出现这个报错.dotnet xx.dll命令网站能够正常运行.说明不是程序问题. 经过一番折腾终于部署 ...
- SqLite踩的坑
一.修改表名称.增加字段.查询表结构.修改表结构字段类型 .修改表名称 ALTER TABLE 旧表名 RENAME TO 新表名 eg: ALTER TABLE or_sql_table RENAM ...
- WEBAPI 设置上传文件大小
参考资料:https://stackoverflow.com/questions/33399267/cors-error-when-uploading-larger-files https:// ...