很有意思的一道题啊。

求两个序列的最大公共子序列。保证每个序列中含有1-n各5个。

如果直接LCS显然是TLE的。该题与普通的LCS不同的是每个序列中含有1-n各5个。

考虑LCS的经典DP方程。dp[i][j]=dp[i-1][j-1]+1.(a[i]==b[j])。 dp[i][j]=max(dp[i-1][j],dp[i][j-1]).(a[i]!=b[j])。

如果换个角度看看。令dp[i][j]表示a序列以i结尾,b序列到j的最大公共子序列长度。

则有dp[i][j]=max(dp[k][j])+1.(a[i]==b[j]&&k<i)。 dp[i][j]=max(dp[i][k]).(a[i]!=b[j]&&k<j).

如果从b序列从左向右更新状态的话。第一个转移就是求前缀最大值。第二个转移实际就是不变。

因此维护一个线段树即可。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N*], b[N*], vis[N][], cnt[N], seg[N*]; void push_up(int p){seg[p]=max(seg[p<<],seg[p<<|]);}
int query(int p, int l, int r, int R){
if (R<l) return ;
if (R>=r) return seg[p];
int mid=(l+r)>>;
return max(query(lch,R),query(rch,R));
}
void update(int p, int l, int r, int L, int val){
if (L>r||L<l) return ;
if (L==l&&L==r) seg[p]=max(seg[p],val);
else {
int mid=(l+r)>>;
update(lch,L,val); update(rch,L,val); push_up(p);
}
}
int main ()
{
int n;
scanf("%d",&n);
FOR(i,,n*) {
scanf("%d",a+i);
vis[a[i]][++cnt[a[i]]]=i;
}
FOR(i,,n*) {
scanf("%d",b+i);
for (int j=; j>=; --j) {
int tmp=query(,,n*,vis[b[i]][j]-)+;
update(,,n*,vis[b[i]][j],tmp);
}
}
printf("%d\n",query(,,n*,n*));
return ;
}

BZOJ 1264 基因匹配(DP+线段树)的更多相关文章

  1. BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)

    BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...

  2. bzoj 1264 基因匹配

    Written with StackEdit. Description 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的\(DNA\)序列由无数种碱基排列而成(地球上只有\(4\)种) ...

  3. BZOJ 1264 基因匹配Match(LCS转化LIS)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1264 题意:给出两个数列,每个数列的长度为5n,其中1-n每个数字各出现5次.求两个数列 ...

  4. BZOJ 1835 基站选址(DP+线段树)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

  5. cf834D(dp+线段树区间最值,区间更新)

    题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...

  6. ZOJ 3349 Special Subsequence 简单DP + 线段树

    同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...

  7. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  8. [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)

    [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...

  9. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

随机推荐

  1. 20155317王新玮 2016-2017-2《Java程序设计》第2周学习总结

    20155317 2016-2017-2<Java程序设计>第2周学习总结 课本知识: 认识类型与环境 整数:包括short,int,long .它们分别占用2个字节,4个字节和8个字节. ...

  2. 20155334 实验三 敏捷开发与XP实践

    实验内容 XP基础 XP核心实践 相关工具 实验要求 没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 完成实验.撰写实验报告,实验报告以 ...

  3. 用php实现简单的自制计算器

    存档: <!DOCTYPE html> <html> <head> <title>PHP实现计算器</title> </head> ...

  4. Java or Python?测试开发工程师如何选择合适的编程语言?

    很多测试开发工程师尤其是刚入行的同学对编程语言和技术栈选择问题特别关注,毕竟掌握一门编程语言要花不少时间成本,也直接关系到未来的面试和就业(不同企业/项目对技术栈要求也不一样),根据自身情况做一个相对 ...

  5. 解决xampp启动mysql失败

    进入到注册表内 命令:regedit 进入到路径:计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MySQL 修改路径为:" ...

  6. 记因内核版本错误导致U盘不能识别的问题解决

    U盘插上电脑,发现没有自动挂载.然后运行sudo fdisk -l一看,发现并没有U盘所对应的设备,也就是U盘不能识别了!以前从没在Linux上遇到这种问题,通过查资料得知,要识别U盘,需要装载usb ...

  7. Bracket Sequences Concatenation Problem括号序列拼接问题(栈+map+思维)

    A bracket(括号) sequence is a string containing only characters "(" and ")".A regu ...

  8. "Hello World!"团队第十次会议

    Scrum会议 今天是我们"Hello World!"团队第十次召开会议,博客内容是: 1.会议时间 2.会议成员 3.会议地点 4.会议内容 5.todo list 6.会议照片 ...

  9. Java变量声明,实例化,问题

    1.变量在输出前必须实例化,这是因为只有声明,没有分配内存空间 在这种情况下会报错 2.实例化后,尽管没有赋值,可能是默认了吧,但也不会输出null,什么也没有输出 上面的理解可能是错的,a赋值了,就 ...

  10. Ubuntu16.04安装oracle-java8-installer

    本篇博客参考 1. 安装默认JRE/JDK 更新 sudo apt-get update 检查是否安装了Java java -version 如果返回The program java can be f ...