怎么题解都是用费用流做的啊。。。用单调队列多优美啊。

题意:某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初的库存量为零,第n月月底的库存量也为零,问如何安排这n个月订购计划,才能使成本最低?每月月初订购,订购后产品立即到货,进库并供应市场,于当月被售掉则不必付存贮费。假设仓库容量为S。

首先这道题和经典的汽车加油问题差不多,那道题可以用单调队列做,然而这道题也是可以的。

此题唯一的难点在于存储费用m,也就是放在仓库里每件产品每个月多加m元,而这个产品的费用实际上只取决与什么时候拿出来。

我们可以在读入di的时候,让di变成di-(i-1)*m,这样每件产品就只和它取出来的时间有关系,而这个关系显然是单调的。

那么我们类似于经典问题,使仓库一直处于满货的状态,如果要加货,就把比新加的货物价值高的给拿出来。这样贪心的选择用单调队列维护。

可以达到O(n),而这道题的n<=50,不得不说数据是真的太弱了,是为了方便费用流?

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Qnode{int cost, num;}que[N];
int U[N], D[N], head, tail; int main ()
{
int n, m, S, ans=, V=;
scanf("%d%d%d",&n,&m,&S);
FOR(i,,n) scanf("%d",U+i);
FOR(i,,n) scanf("%d",D+i), D[i]-=(i-)*m;
head=; tail=-;
FOR(i,,n) {
while (head<=tail&&que[tail].cost>=D[i]) V-=que[tail].num, --tail;
while (head<=tail&&que[head].num<=U[i]) {
ans+=(que[head].cost+(i-)*m)*que[head].num;
V-=que[head].num; U[i]-=que[head].num;
++head;
}
if (head<=tail) ans+=(que[head].cost+(i-)*m)*U[i], V-=U[i], que[head].num-=U[i];
else ans+=(D[i]+(i-)*m)*U[i];
que[++tail].cost=D[i]; que[tail].num=S-V; V=S;
}
printf("%d\n",ans);
return ;
}

BZOJ 2424 订货(贪心+单调队列)的更多相关文章

  1. HDU 6047 Maximum Sequence (贪心+单调队列)

    题意:给定一个序列,让你构造出一个序列,满足条件,且最大.条件是 选取一个ai <= max{a[b[j], j]-j} 析:贪心,贪心策略就是先尽量产生大的,所以就是对于B序列尽量从头开始,由 ...

  2. BZOJ1233 [Usaco2009Open]干草堆tower[贪心+单调队列优化]

    地址 注意思路!多看几遍! 很巧妙的一道题.不再是决策点以dp值中一部分含j项为维护对象,而是通过维护条件来获取决策. 首先有个贪心策略,让底层的宽度尽可能小,才能让高度尽可能高.所以应该倒着dp,表 ...

  3. BZOJ 1233 干草堆 (单调队列优化DP)

    $ BZOJ~1233~~ $ 干草堆: (题目特殊性质) $ solution: $ 很妙的一道题目,开始看了一眼觉得是个傻逼贪心,从后往前当前层能多短就多短,尽量节省花费.但是这是DP专题,怎么会 ...

  4. USACO 2009 Open 干草塔 Tower of Hay(贪心+单调队列优化DP)

    https://ac.nowcoder.com/acm/contest/1072/B Description 为了调整电灯亮度,贝西要用干草包堆出一座塔,然后爬到牛棚顶去把灯泡换掉.干草包会从传送带上 ...

  5. 【uva 11491】Erasing and Winning(算法效率--贪心+单调队列)

    题意:有一个N位整数,要求输出删除其中D个数字之后的最大整数. 解法:贪心.(P.S.要小心,我WA了2次...)由于规定了整数的位数,那么我们要尽量让高位的数字大一些,也就是要尽量删去前面小的数字. ...

  6. BZOJ 1047 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 题意:见中文题面 思路:该题是求二维的子矩阵的最大值与最小值的差值尽量小.所以可以考 ...

  7. BZOJ 1855 股票交易(单调队列优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...

  8. BZOJ 1012 线段树||单调队列

    非常裸的线段树  || 单调队列: 假设一个节点在队列中既没有时间优势(早点入队)也没有值优势(值更大),那么显然不管在如何的情况下都不会被选为最大值. 既然它仅仅在末尾选.那么自然能够满足以上的条件 ...

  9. bzoj 2216: Lightning Conductor 单调队列优化dp

    题目大意 已知一个长度为\(n\)的序列\(a_1,a_2,...,a_n\)对于每个\(1\leq i\leq n\),找到最小的非负整数\(p\)满足: 对于任意的\(j\), \(a_j \le ...

随机推荐

  1. 【Windows10】我的电脑从新装到优化配置

    [Windows10]我的电脑从新装到优化配置 必装软件 Visual Studio Microsoft VS Code Microsoft Expression Design 4 Notepad2- ...

  2. day4 基础

    1.变量 2.打印名片 3.raw_input() 和 input() 4.变量类型 type 5. if-else 6.标示符的规则 7.关键字 8.运算符 9.print打印多个值 1.变量 sc ...

  3. docker部署war包到阿里云

    最近买了个阿里云服务器,配置1核2g内存,学习够了.记录下过程. 1,服务器相关,请看下图,云服务器主要配置是安全组和密钥,前者是开放端口,后者可以用于远程连接(比如我windows系统通过putty ...

  4. JAVA学习笔记--初识容器类库

    一.前言 JAVA中一切皆为对象,因而,持有对象显得尤为重要. 在JAVA中,我们可以通过创建一个对象的引用的方式来持有对象: HoldingObject holding; 也可以创建一个对象数组来持 ...

  5. XSS留言板实现

    XSS 留言板实现-笔记 预备知识 XSS漏洞 XSS攻击全称跨站脚本攻击,是为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS,XSS ...

  6. 福利,一张图看懂IT售前工程师修炼之道

    职场中的新人如何自我定位? 如何深刻理解IT售前这个职位? 如何从IT售前菜鸟成长为IT售前专家? 推荐这本书<IT售前工程师修炼之道> 本书精华内容 售前的重要性 售前要有逻辑能力 售前 ...

  7. 第1章 Python基础

    一.安装Python windows: 1.下载安装包     https://www.python.org/downloads/ 2.安装     默认安装路径:C:\python27 3.配置环境 ...

  8. JavaScript 高级之面向对象

    1. 对象属性及方法 创建对象的方式 <script> //创建对象的方式一 var obj = {}; //创建对象的方式一 var obj = new Object(); </s ...

  9. 阿里IPO法律咨询费达1580万美元 为Facebook六倍

    据路透社报道,阿里巴巴集团周五在 IPO (首次公开招股)更新文件中披露,将向美国盛信律师事务所(Simpson Thacher)以及其他为 IPO 提供咨询服务的律师事务所支付 1580 万美元的法 ...

  10. ES6的新特性(11)——Class 的继承

    Class 的继承 简介 Class 可以通过extends关键字实现继承,这比 ES5 的通过修改原型链实现继承,要清晰和方便很多. class Point { } class ColorPoint ...