怎么题解都是用费用流做的啊。。。用单调队列多优美啊。

题意:某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初的库存量为零,第n月月底的库存量也为零,问如何安排这n个月订购计划,才能使成本最低?每月月初订购,订购后产品立即到货,进库并供应市场,于当月被售掉则不必付存贮费。假设仓库容量为S。

首先这道题和经典的汽车加油问题差不多,那道题可以用单调队列做,然而这道题也是可以的。

此题唯一的难点在于存储费用m,也就是放在仓库里每件产品每个月多加m元,而这个产品的费用实际上只取决与什么时候拿出来。

我们可以在读入di的时候,让di变成di-(i-1)*m,这样每件产品就只和它取出来的时间有关系,而这个关系显然是单调的。

那么我们类似于经典问题,使仓库一直处于满货的状态,如果要加货,就把比新加的货物价值高的给拿出来。这样贪心的选择用单调队列维护。

可以达到O(n),而这道题的n<=50,不得不说数据是真的太弱了,是为了方便费用流?

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Qnode{int cost, num;}que[N];
int U[N], D[N], head, tail; int main ()
{
int n, m, S, ans=, V=;
scanf("%d%d%d",&n,&m,&S);
FOR(i,,n) scanf("%d",U+i);
FOR(i,,n) scanf("%d",D+i), D[i]-=(i-)*m;
head=; tail=-;
FOR(i,,n) {
while (head<=tail&&que[tail].cost>=D[i]) V-=que[tail].num, --tail;
while (head<=tail&&que[head].num<=U[i]) {
ans+=(que[head].cost+(i-)*m)*que[head].num;
V-=que[head].num; U[i]-=que[head].num;
++head;
}
if (head<=tail) ans+=(que[head].cost+(i-)*m)*U[i], V-=U[i], que[head].num-=U[i];
else ans+=(D[i]+(i-)*m)*U[i];
que[++tail].cost=D[i]; que[tail].num=S-V; V=S;
}
printf("%d\n",ans);
return ;
}

BZOJ 2424 订货(贪心+单调队列)的更多相关文章

  1. HDU 6047 Maximum Sequence (贪心+单调队列)

    题意:给定一个序列,让你构造出一个序列,满足条件,且最大.条件是 选取一个ai <= max{a[b[j], j]-j} 析:贪心,贪心策略就是先尽量产生大的,所以就是对于B序列尽量从头开始,由 ...

  2. BZOJ1233 [Usaco2009Open]干草堆tower[贪心+单调队列优化]

    地址 注意思路!多看几遍! 很巧妙的一道题.不再是决策点以dp值中一部分含j项为维护对象,而是通过维护条件来获取决策. 首先有个贪心策略,让底层的宽度尽可能小,才能让高度尽可能高.所以应该倒着dp,表 ...

  3. BZOJ 1233 干草堆 (单调队列优化DP)

    $ BZOJ~1233~~ $ 干草堆: (题目特殊性质) $ solution: $ 很妙的一道题目,开始看了一眼觉得是个傻逼贪心,从后往前当前层能多短就多短,尽量节省花费.但是这是DP专题,怎么会 ...

  4. USACO 2009 Open 干草塔 Tower of Hay(贪心+单调队列优化DP)

    https://ac.nowcoder.com/acm/contest/1072/B Description 为了调整电灯亮度,贝西要用干草包堆出一座塔,然后爬到牛棚顶去把灯泡换掉.干草包会从传送带上 ...

  5. 【uva 11491】Erasing and Winning(算法效率--贪心+单调队列)

    题意:有一个N位整数,要求输出删除其中D个数字之后的最大整数. 解法:贪心.(P.S.要小心,我WA了2次...)由于规定了整数的位数,那么我们要尽量让高位的数字大一些,也就是要尽量删去前面小的数字. ...

  6. BZOJ 1047 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 题意:见中文题面 思路:该题是求二维的子矩阵的最大值与最小值的差值尽量小.所以可以考 ...

  7. BZOJ 1855 股票交易(单调队列优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...

  8. BZOJ 1012 线段树||单调队列

    非常裸的线段树  || 单调队列: 假设一个节点在队列中既没有时间优势(早点入队)也没有值优势(值更大),那么显然不管在如何的情况下都不会被选为最大值. 既然它仅仅在末尾选.那么自然能够满足以上的条件 ...

  9. bzoj 2216: Lightning Conductor 单调队列优化dp

    题目大意 已知一个长度为\(n\)的序列\(a_1,a_2,...,a_n\)对于每个\(1\leq i\leq n\),找到最小的非负整数\(p\)满足: 对于任意的\(j\), \(a_j \le ...

随机推荐

  1. 20155325 加分作业 实现pwd

    要求 1 学习pwd命令 2 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 3 实现mypwd 4 测试mypwd 准备 思路 问题 1.如何获取当前目录的节点号 Linux ...

  2. AngularJS中Directive指令系列 - 基本用法

    参考: https://docs.angularjs.org/api/ng/service/$compile http://www.zouyesheng.com/angular.html Direct ...

  3. 电信NB-IOT的温湿度采集器开发记录

    1. 首先打开浏览器,登录电信商用服务器,上传profile文件 2. 上传编解码插件在,注意的是,上传编解码插件是电信测试用服务器平台(不同的网址),反正不明白电信搞啥幺蛾子,得两个地方去上传 3. ...

  4. equals和==方法比较(三)--Long中LongCache源码分析

    下面我们来分析,上篇博客中遗留的问题,为什么下方的两个一个是true,两一个是false那? //true Long l1=123l; Long l2=123l; System.out.println ...

  5. Spring学习(一)-----Spring 模块详解

    官方下载链接:http://repo.spring.io/release/org/springframework/spring/ Spring 模块详解: Core 模块 spring-beans-3 ...

  6. svn 配置仓库

    1.新建一个空文件夹,然后点击--在此创建版本库. 2.修改conf 下的 svnserve.conf : anon-access = read auth-access = write passwor ...

  7. VIN码/车架号的详解,车架号识别,VIN码识别,OCR车架号识别能带来什么

    各位车主在车检时不知道有没有注意到一件事,就是工作人员会打开车前盖在前围钢板上拓一张条码.下面来给大家介绍一下,这张条码就是VIN号,俗称钢印号,就像我们每个人都有自己的身份证号码一样,这也是汽车界的 ...

  8. MantisBT导出Excel文件名显示中文的修改方法

    我安装的是 mantisbt-2.15.0. 在“查看问题”页面导出Excel文件后,其文件名虽然是我选择的项目名称,但是,若项目名称中有中文,这就是用%加编码显示. 解决方法是: 在  <Ma ...

  9. Scala基础知识笔记1

    上一篇文章介绍了如何下载scala, 因为在官网上点击下载按钮无法下载, 下面介绍scala的基础语法: 1 scala和java的关系 Scala是基于jvm的一门编程语言,Scala的代码最终会经 ...

  10. Zabbix部署-LNMP环境

    原文发表于cu:2016-05-05 参考文档: LNMP安装:http://www.osyunwei.com/archives/7891.html 一.环境 Server:CentOS-7-x86_ ...