【bzoj4897】[Thu Summer Camp2016]成绩单 区间dp
题目描述
输入
输出
样例输入
10
3 1
7 10 9 10 6 7 10 7 1 2
样例输出
15
题解
区间dp
对于这种删除连续一段,剩下的拼到一起的问题:把操作对应到原序列上,相当于一些要么包含要么相离的操作。
相离的情况显然是区间dp,设 $f[l][r]$ 表示将原序列的 $[l,r]$ 全部删掉所需的最小总代价。
对于包含的情况,也可以使用区间dp来解决。具体方法是:同时维护转移到一半时的状态。如下图(先删b~c再删a~d):

记录从a转移到b的状态,dp得知bc可以用某代价消掉,进而推知a转移到c的状态,继续转移到d即可。
由于极差之和最大值与最小值有关,因此离散化后设 $g[l][r][i][j]$ 表示将 $[l,r]$ 删至剩下的数最小值为 $i$ ,最大值为 $j$ 的最小代价。
那么每次dp区间 $[l,r]$ ,最后一个位置 $r$ 的转移有两种情况:
- 和前面的 $[l,r-1]$ 放到一起删除,这样的话 $r$ 会影响最小值与最大值,相应的有 $g[l][r][\text{min}(i,w[r])][\text{max}(i,w[r])]=g[l][r-1][i][j]$ ;
- 和后面的某一段 $[k+1,r]$ 作为被包含的子区间删除,这样的话枚举 $k$ ,有 $g[l][r][i][j]=g[l][k][i][j]+f[k+1][r]$ 。
处理完这个区间的 $g[l][r][][]$ 后处理 $f[l][r]$ ,显然依题意有 $f[l][r]=g[l][r][i][j]+a+b\times(j-i)^2$ 。
最后的答案就是 $f[1][n]$ 。
时间复杂度 $O(n^5)$ ,常数极小可以通过。
注意边界问题什么的。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int w[52] , v[52] , f[52][52] , g[52][52][52][52];
inline void gmin(int &x , int y)
{
x > y ? x = y : 0;
}
int main()
{
int n , a , b , len , i , j , k , l , r;
scanf("%d%d%d" , &n , &a , &b);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , v[i] = w[i];
sort(v + 1 , v + n + 1);
memset(f , 0x3f , sizeof(f)) , memset(g , 0x3f , sizeof(g));
for(i = 1 ; i <= n ; i ++ ) w[i] = lower_bound(v + 1 , v + n + 1 , w[i]) - v , g[i][i][w[i]][w[i]] = 0 , f[i][i] = a;
for(len = 2 ; len <= n ; len ++ )
{
for(l = 1 ; l <= n - len + 1 ; l ++ )
{
r = l + len - 1 , g[l][r][w[r]][w[r]] = f[l][r - 1];
for(i = 1 ; i <= n ; i ++ )
for(j = i ; j <= n ; j ++ )
gmin(g[l][r][min(i , w[r])][max(j , w[r])] , g[l][r - 1][i][j]);
for(k = l ; k < r ; k ++ )
for(i = 1 ; i <= n ; i ++ )
for(j = i ; j <= n ; j ++ )
gmin(g[l][r][i][j] , g[l][k][i][j] + f[k + 1][r]);
for(i = 1 ; i <= n ; i ++ )
for(j = i ; j <= n ; j ++ )
gmin(f[l][r] , g[l][r][i][j] + a + b * (v[j] - v[i]) * (v[j] - v[i]));
}
}
printf("%d\n" , f[1][n]);
return 0;
}
【bzoj4897】[Thu Summer Camp2016]成绩单 区间dp的更多相关文章
- BZOJ.4897.[Thu Summer Camp2016]成绩单(区间DP)
BZOJ 显然是个区间DP.令\(f[l][r]\)表示全部消掉区间\([l,r]\)的最小花费. 因为是可以通过删掉若干子串来删子序列的,所以并不好直接转移.而花费只与最大最小值有关,所以再令\(g ...
- BZOJ4897: [Thu Summer Camp2016]成绩单【DP of DP】
Description 期末考试结束了,班主任L老师要将成绩单分发到每位同学手中.L老师共有n份成绩单,按照编号从1到n的顺序叠 放在桌子上,其中编号为i的成绩单分数为w_i.成绩单是按照批次发放的. ...
- BZOJ4897 [Thu Summer Camp2016]成绩单 【dp】
题目链接 BZOJ4897 题解 发现我们付出的代价与区间长度无关,而与区间权值范围有关 离散化一下权值 我们设\(f[l][r][x][y]\)表示区间\([l,r]\)消到只剩权值在\([x,y] ...
- bzoj4897 [Thu Summer Camp2016]成绩单
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4897 [题解] 第一次看这题想的是f[l,r]的区间dp发现仅记录这两个好像不能转移啊 会出 ...
- BZOJ 4897: [Thu Summer Camp2016]成绩单 动态规划
Description 期末考试结束了,班主任L老师要将成绩单分发到每位同学手中.L老师共有n份成绩单,按照编号从1到n的顺序叠 放在桌子上,其中编号为i的成绩单分数为w_i.成绩单是按照批次发放的. ...
- [THUSC2016]成绩单 [区间dp]
简单区间dp. 考虑 \(f_{i,j,mn,mx}\)表示 \(i,j\) 区间的最大值为 \(mx\),最小值为 \(mn\) 的最小花费,\(g_{i,j}\) 为删掉 \([i,j]\) 的最 ...
- LOJ 2292 「THUSC 2016」成绩单——区间DP
题目:https://loj.ac/problem/2292 直接 DP 很难做,主要是有那种 “一个区间内部有很多个别的区间” 的情况. 自己想了一番枚举 max-min 的最大限制,然后在该基础上 ...
- 区间dp提升复习
区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...
- BZOJ4897 THUSC2016成绩单(区间dp)
拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代 ...
随机推荐
- 第9周 实现PWD命令
第9周 实现PWD命令 码云链接:https://gitee.com/bestiisjava2017/laura5332/blob/master/%E4%BF%A1%E6%81%AF%E5%AE%89 ...
- 20155336 2016-2017-2《JAVA程序设计》第二周学习总结
20155336 2016-2017-2 <JAVA 程序设计>第二周学习总结 教材学习内容 1: GIT版本检测 2: JAVA中基本类型 整数 字节 浮点数 字符 布尔(▲) 通过AP ...
- WPF中。。DataGrid 实现时间控件和下拉框控件
DatePicker 和新的 DataGrid 行 用户与 DataGrid 中日期列的交互给我造成了很大的麻烦. 我通过将一个 Data Source 对象拖动到 WPF 窗口上,创建了一个 Dat ...
- 如何注册Uber司机(全国版最新最详细注册流程)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://didi-uber.com/archiv ...
- 成都Uber优步司机奖励政策(4月16日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- [SDOI2010]地精部落 DP
LG传送门 DP好题 题意很简单,就是求1-n的排列,满足一个数两边的数要么都比它大要么都比它小,求这样的排列个数对\(p\)取膜的值(为了表述简单,我们称这样的排列为波动序列). 这个题我第一眼看到 ...
- 一个web应用的诞生(5)--数据表单
下面把角色分为两种,普通用户和管理员用户,至少对于普通用户来说,直接修改DB是不可取的,要有用户注册的功能,下面就开始进行用户注册的开发. 用户表 首先要想好用户注册的时候需要提供什么信息:用户名.密 ...
- 用php实现简单的自制计算器
存档: <!DOCTYPE html> <html> <head> <title>PHP实现计算器</title> </head> ...
- python数据可视化——matplotlib 用户手册入门:使用指南
参考matplotlib官方指南: https://matplotlib.org/tutorials/introductory/usage.html#sphx-glr-tutorials-introd ...
- 使用Mininet创建网络拓扑
使用Mininet创建Topo Python脚本实现创建拓扑 #coding:utf-8 from mininet.net import Mininet from mininet.topo impor ...