【BZOJ4559】[JLoi2016]成绩比较

Description

G系共有n位同学,M门必修课。这N位同学的编号为0到N-1的整数,其中B神的编号为0号。这M门必修课编号为0到M-1的整数。一位同学在必修课上可以获得的分数是1到Ui中的一个整数。如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压。在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压。D神查到了B神每门必修课的排名。这里的排名是指:如果B神某门课的排名为R,则表示有且仅有R-1位同学这门课的分数大于B神的分数,有且仅有N-R位同学这门课的分数小于等于B神(不包括他自己)。我们需要求出全系所有同学每门必修课得分的情况数,使其既能满足B神的说法,也能符合D神查到的排名。这里两种情况不同当且仅当有任意一位同学在任意一门课上获得的分数不同。你不需要像D神那么厉害,你只需要计算出情况数模10^9+7的余数就可以了。

Input

第一行包含三个正整数N,M,K,分别表示G系的同学数量(包括B神),必修课的数量和被B神碾压的同学数量。第二行包含M个正整数,依次表示每门课的最高分Ui。第三行包含M个正整数,依次表示B神在每门课上的排名Ri。保证1≤Ri≤N。数据保证至少有1种情况使得B神说的话成立。N<=100,M<=100,Ui<=10^9

Output

仅一行一个正整数,表示满足条件的情况数模10^9+7的余数。

Sample Input

3 2 1
2 2
1 2

Sample Output

10

题解:本题可以分为两部分处理,答案等于两部分的方案数之积。

第一部分是在碾压K个人的前提下,所有人每门课的分数与B神分数的大小关系的方案数。不难想到容斥,用f[i]表示至少碾压了i个人的方案数,那么$f[i]=C_{n-1}^i\prod\limits_{j=1}^mC_{n-i-1}^{Rj-1}$。答案=至少碾压K个人-至少碾压K+1个人+至少碾压K+2个人。。。所以$ans1=\sum\limits_{i=K}^n(-1)^{K-i}C_i^kf[i]$。

第二部分是在已经确定所有人每门课与B神的相对关系的情况下,每个人得分的方案数。我们可以先分别计算每门课的方案数,最后将其乘起来。设当前课B神的排名为R,总分为U。一个比较暴力的方法就是我们枚举B神的得分x,那么方案数就是$x^{n-R}(U-x)^{R-1}$。所以这门课的总方案数就是:

$\sum\limits_{x=1}^Ux^{n-R}(U-x)^{R-1}\\=\sum\limits_{x=1}^U\sum\limits_{k=0}^{R-1}(-1)^kC_{R-1}^kU^{R-1-k}x^{n-R+k}\\=\sum\limits_{k=0}^{R-1}(-1)^kC_{R-1}^kU^{R-1-k}\sum\limits_{x=1}^Ux^{n-R+k}$

所以现在问题就在于如何快速求$\sum\limits_{i=1}^si^k$,我们设这个东西=g[k]。下面这步非常神:我们观察这个式子

$(s+1)^k-s^k=\sum\limits_{j=0}^{k-1}C_k^js^j\\s^k-(s-1)^k=\sum\limits_{j=0}^{k-1}C_k^j(s-1)^j\\...\\2^k-1^k=\sum\limits_{j=0}^{k-1}C_k^j1^j$

等式两边分别求和

$\sum\limits_{i=1}^s(i+1)^k-i^k=\sum\limits_{i=1}^{s}\sum\limits_{j=0}^{k-1}C_k^ji^j\\(s+1)^k-1=\sum\limits_{j=0}^{k-1}C_k^j\sum\limits_{i=1}^si^j=\sum\limits_{j=0}^{k-1}C_k^jg[j]$

将g[k-1]放到左面即可得

$g[k-1]=\frac {(s+1)^k-1-\sum\limits_{j=0}^{k-2}C_k^jg[j]} {C_k^{k-1}}$

递推求出g[k]即可。

时间复杂度$O(n^3)$。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1000000007; int n,m,K;
ll ans1,ans2;
int R[110];
ll c[110][110],f[110],U[110],g[110];
inline ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%P;
x=x*x%P,y>>=1;
}
return z;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd(),K=rd(),ans2=1;
int i,j,k;
for(i=0;i<=max(n,m);i++)
{
c[i][0]=1;
for(j=1;j<=i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%P;
}
for(i=1;i<=m;i++) U[i]=rd();
for(i=1;i<=m;i++) R[i]=rd();
for(i=n-1;i>=K;i--)
{
f[i]=c[n-1][i];
for(j=1;j<=m;j++) f[i]=f[i]*c[n-i-1][n-R[j]-i]%P;
ans1=(ans1+(((i^K)&1)?-1:1)*f[i]*c[i][K]%P+P)%P;
}
for(i=1;i<=m;i++)
{
ll tmp=0;
g[0]=U[i];
for(k=1;k<=n;k++)
{
g[k]=(pm(U[i]+1,k+1)-1+P)%P;
for(j=0;j<k;j++) g[k]=(g[k]-c[k+1][j]*g[j]%P+P)%P;
g[k]=g[k]*pm(c[k+1][k],P-2)%P;
}
for(j=0;j<=R[i]-1;j++) tmp=(tmp+((j&1)?-1:1)*c[R[i]-1][j]*pm(U[i],R[i]-j-1)%P*g[n-R[i]+j]%P+P)%P;
ans2=ans2*tmp%P;
}
printf("%lld",ans1*ans2%P);
return 0;
}

【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学的更多相关文章

  1. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  2. 2015 asia xian regional F Color (容斥 + 组合数学)

    2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Descrip ...

  3. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  4. BZOJ4559 JLOI2016成绩比较(容斥原理+组合数学+斯特林数)

    容斥一发改为计算至少碾压k人的情况数量,这样对于每门课就可以分开考虑再相乘了.剩下的问题是给出某人的排名和分数的值域,求方案数.枚举出现了几种不同的分数,再枚举被给出的人的分数排第几,算一个类似斯特林 ...

  5. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  6. bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...

  7. 容斥 + 组合数学 ---Codeforces Round #317 A. Lengthening Sticks

    Lengthening Sticks Problem's Link: http://codeforces.com/contest/571/problem/A Mean: 给出a,b,c,l,要求a+x ...

  8. Gym 100548F Color 给花染色 容斥+组合数学+逆元 铜牌题

    Problem F. ColorDescriptionRecently, Mr. Big recieved n flowers from his fans. He wants to recolor th ...

  9. [CTS2019]随机立方体(容斥+组合数学)

    这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不 ...

随机推荐

  1. 防止短连接耗尽你的动态TCP端口

    详见TCP协议https://en.wikipedia.org/wiki/Transmission_Control_Protocol但是TIME_WAIT是有时间窗口的,Linux默认是60秒.所以如 ...

  2. jQuery实现布局高宽自适应

    在页面布局(layout)时经常是上左右的框架布局并且需要宽.高度的自适应,div+css是无法实现(*hegz:div+css其实是可以实现的,利用jQuery比较容易实现浏览器的兼容性),所以需要 ...

  3. 【转】Mac下升级python2.7到python3.6

    1. 前言 Mac系统自带python2.7,本文目的是将自带的python升级到3.6版本. 网上有本多的做法是让python2.7和python3.X两个版本共存,博主并不知道,是两版本共存好,还 ...

  4. C++ 判断目录是否存在并新建目录

    http://blog.csdn.net/u012005313/article/details/50688257 #include <io.h> #include <string&g ...

  5. 机器学习理论之SVM

    支持向量机系列 (1) 算法理论理解 http://blog.pluskid.org/?page_id=683 手把手教你实现SVM算法(一) (2) 算法应用 算法应用----python 实现实例 ...

  6. 【Java面试题】39 Set里的元素是不能重复的,那么用什么方法来区分重复与否呢? 是用==还是equals()? 它们有何区别?

    1.什么是Set?(what) Set是Collection容器的一个子接口,它不允许出现重复元素,当然也只允许有一个null对象. 2.如何来区分重复与否呢?(how) “ 用 iterator() ...

  7. centos6.5 开发环境部署(nignx1.7.10+php5.4.38+mysql+ftp)

    一些命令和规则以及准备 本次流程再 DigitalOcean上的vps上通过 查看是否已经安装 rpm -qa | grep nginx 删除安装 #普通删除模式 rpm -e nginx #强力删除 ...

  8. UVA 1203 - Argus(优先队列)

    UVA 1203 - Argus 题目链接 题意:给定一些注冊命令.表示每隔时间t,运行一次编号num的指令.注冊命令结束后.给定k.输出前k个运行顺序 思路:用优先队列去搞,任务时间作为优先级.每次 ...

  9. Python 常见文件操作的函数示例(转)

    转自:http://www.cnblogs.com/txw1958/archive/2012/03/08/2385540.html # -*-coding:utf8 -*- ''''' Python常 ...

  10. raw_input()

    raw_input() 用于接收标准输入,并把标准输入当成字符串类型来处理,只能在 Python2 中使用,Python3 中没有这个函数 #!/usr/bin/env python #-*- cod ...