A. Counterexample
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Your friend has recently learned about coprime numbers. A pair of numbers {a, b} is called coprime if the maximum number that divides both a and b is equal to one.

Your friend often comes up with different statements. He has recently supposed that if the pair (a, b) is coprime and the pair (b, c) is coprime, then the pair (a, c) is coprime.

You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (a, b, c), for which the statement is false, and the numbers meet the condition l ≤ a < b < c ≤ r.

More specifically, you need to find three numbers (a, b, c), such that l ≤ a < b < c ≤ r, pairs (a, b) and (b, c) are coprime, and pair(a, c) is not coprime.

Input

The single line contains two positive space-separated integers lr (1 ≤ l ≤ r ≤ 1018; r - l ≤ 50).

Output

Print three positive space-separated integers abc — three distinct numbers (a, b, c) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.

If the counterexample does not exist, print the single number -1.

Examples
input
2 4
output
2 3 4
input
10 11
output
-1
input
900000000000000009 900000000000000029
output
900000000000000009 900000000000000010 900000000000000021
Note

In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.

In the second sample you cannot form a group of three distinct integers, so the answer is -1.

In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.

暴力;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x,y) cout<<"bug"<<x<<" "<<y<<endl;
#define bug(x) cout<<"xxx "<<x<<endl;
const int N=1e5+,M=1e6+,inf=2e9+,mod=;
const ll INF=1e18+;
int main()
{
ll l,r;
scanf("%lld%lld",&l,&r);
for(ll i=l;i<=r;i++)
{
for(ll j=i+;j<=r;j++)
{
for(ll k=j+;k<=r;k++)
{
if(i==j||i==k||j==k)continue;
if(__gcd(i,j)==&&__gcd(j,k)==&&__gcd(i,k)!=)
return *printf("%lld %lld %lld\n",i,j,k);
}
}
}
printf("-1\n");
return ;
}
B. Friends and Presents
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.

In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.

Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.

A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.

Input

The only line contains four positive integers cnt1, cnt2, xy (1 ≤ cnt1, cnt2 < 109; cnt1 + cnt2 ≤ 109; 2 ≤ x < y ≤ 3·104) — the numbers that are described in the statement. It is guaranteed that numbers xy are prime.

Output

Print a single integer — the answer to the problem.

Examples
input
3 1 2 3
output
5
input
1 3 2 3
output
4
Note

In the first sample you give the set of numbers {1, 3, 5} to the first friend and the set of numbers {2} to the second friend. Note that if you give set {1, 3, 5} to the first friend, then we cannot give any of the numbers 1, 3, 5 to the second friend.

In the second sample you give the set of numbers {3} to the first friend, and the set of numbers {1, 2, 4} to the second friend. Thus, the answer to the problem is 4.

题意:第一个人需要cnt1个数,并且每个数都不被x整除,第二个人需要cnt2个数,并且每个数都不被y整除;

    求最小的v,使得1-v,v个数可以使得两个都能拿到各自数目的数;

思路:二分v即可,主要在于check怎么写;

    有点类似容斥的原理,先把两个都不能放的去掉,然后将不能放2的尽量放1 ,不能放1 的尽量放2;

   然后把v剩余与cnt1,cnt2剩余比较;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x,y) cout<<"bug"<<x<<" "<<y<<endl;
#define bug(x) cout<<"xxx "<<x<<endl;
const int N=1e5+,M=1e6+,inf=2e9+,mod=;
const ll INF=1e18+;
ll check(ll x,ll a,ll b,ll cnt1,ll cnt2)
{
ll p=x/a;
ll q=x/b;
ll c=x/(a*b/__gcd(a,b));
p-=c;
q-=c;
cnt1-=min(cnt1,q);
cnt2-=min(cnt2,p);
return x-c-p-q>=cnt2+cnt1;
}
int main()
{
ll cnt1,cnt2,x,y;
scanf("%lld%lld%lld%lld",&cnt1,&cnt2,&x,&y);
ll l=;
ll r=1e10,ans;
while(l<=r)
{
ll mid=(l+r)>>;
if(check(mid,x,y,cnt1,cnt2))
{
r=mid-;
ans=mid;
}
else l=mid+;
}
printf("%lld\n",ans);
return ;
}
C. Diverse Permutation
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Permutation p is an ordered set of integers p1,   p2,   ...,   pn, consisting of n distinct positive integers not larger than n. We'll denote as nthe length of permutation p1,   p2,   ...,   pn.

Your task is to find such permutation p of length n, that the group of numbers |p1 - p2|, |p2 - p3|, ..., |pn - 1 - pn| has exactly k distinct elements.

Input

The single line of the input contains two space-separated positive integers nk (1 ≤ k < n ≤ 105).

Output

Print n integers forming the permutation. If there are multiple answers, print any of them.

Examples
input
3 2
output
1 3 2
input
3 1
output
1 2 3
input
5 2
output
1 3 2 4 5
Note

By |x| we denote the absolute value of number x.

题意:n个数1-n,随意排放,两两相差为x,使得x的不同的数目为K;

思路:构造思路题,1 n  2  n-1 构造k-1个,后面递增,递减差值都为1 即可;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x,y) cout<<"bug"<<x<<" "<<y<<endl;
#define bug(x) cout<<"xxx "<<x<<endl;
const int N=1e5+,M=1e6+,inf=2e9+,mod=;
const ll INF=1e18+;
int main()
{
int n,k;
scanf("%d%d",&n,&k);
int l=,r=n,last=;
for(int i=;i<=k;i++)
{
if(i&)printf("%d ",l++),last=;
else printf("%d ",r--),last=;
}
if(last)for(int i=l;i<=r;i++)printf("%d ",i);
else for(int i=r;i>=l;i--)printf("%d ",i);
return ;
}
D. Interesting Array
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers liriqi (1 ≤ li ≤ ri ≤ n) meaning that value  should be equal to qi.

Your task is to find any interesting array of n elements or state that such array doesn't exist.

Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal — as "and".

Input

The first line contains two integers nm (1 ≤ n ≤ 105, 1 ≤ m ≤ 105) — the number of elements in the array and the number of limits.

Each of the next m lines contains three integers liriqi (1 ≤ li ≤ ri ≤ n, 0 ≤ qi < 230) describing the i-th limit.

Output

If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n](0 ≤ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them.

If the interesting array doesn't exist, print "NO" (without the quotes) in the single line.

Examples
input
3 1
1 3 3
output
YES
3 3 3
input
3 2
1 3 3
1 3 2
output
NO

思路:线段数区间并;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x,y) cout<<"bug"<<x<<" "<<y<<endl;
#define bug(x) cout<<"xxx "<<x<<endl;
const int N=1e5+,M=1e6+,inf=2e9+,mod=;
const ll INF=1e18+;
struct linetree
{
int sum[N<<],lazy[N<<];
void pushup(int pos)
{
sum[pos]=sum[pos<<]&sum[pos<<|];
}
void pushdown(int pos)
{
if(lazy[pos])
{
sum[pos<<]|=lazy[pos];
sum[pos<<|]|=lazy[pos];
lazy[pos<<]|=lazy[pos];
lazy[pos<<|]|=lazy[pos];
lazy[pos]=;
}
}
void build(int l,int r,int pos)
{
lazy[pos]=;
if(l==r)
{
sum[pos]=;
return;
}
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
sum[pos]|=c;
lazy[pos]|=c;
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)
update(L,R,c,l,mid,pos<<);
if(R>mid)
update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
int query(int L,int R,int l,int r,int pos)
{
if(L<=l&&r<=R)
return sum[pos];
pushdown(pos);
int mid=(l+r)>>;
int ans=((<<)-);
if(L<=mid)
ans&=query(L,R,l,mid,pos<<);
if(R>mid)
ans&=query(L,R,mid+,r,pos<<|);
return ans;
}
};
linetree tree;
int l[N],r[N],x[N];
int main()
{
int n,q,ans=;
scanf("%d%d",&n,&q);
for(int i=;i<=q;i++)
{
scanf("%d%d%d",&l[i],&r[i],&x[i]);
tree.update(l[i],r[i],x[i],,n,);
if(tree.query(l[i],r[i],,n,)!=x[i])
ans=;
}
for(int i=;i<=q;i++)
if(tree.query(l[i],r[i],,n,)!=x[i])
ans=;
if(!ans)
printf("NO\n");
else
{
printf("YES\n");
for(int i=;i<=n;i++)
{
int out=tree.query(i,i,,n,);
printf("%d ",out);
}
}
return ;
}
A. Counterexample
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Your friend has recently learned about coprime numbers. A pair of numbers {a, b} is called coprime if the maximum number that divides both a and b is equal to one.

Your friend often comes up with different statements. He has recently supposed that if the pair (a, b) is coprime and the pair (b, c) is coprime, then the pair (a, c) is coprime.

You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (a, b, c), for which the statement is false, and the numbers meet the condition l ≤ a < b < c ≤ r.

More specifically, you need to find three numbers (a, b, c), such that l ≤ a < b < c ≤ r, pairs (a, b) and (b, c) are coprime, and pair(a, c) is not coprime.

Input

The single line contains two positive space-separated integers lr (1 ≤ l ≤ r ≤ 1018; r - l ≤ 50).

Output

Print three positive space-separated integers abc — three distinct numbers (a, b, c) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.

If the counterexample does not exist, print the single number -1.

Examples
input
2 4
output
2 3 4
input
10 11
output
-1
input
900000000000000009 900000000000000029
output
900000000000000009 900000000000000010 900000000000000021
Note

In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.

In the second sample you cannot form a group of three distinct integers, so the answer is -1.

In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.

Codeforces Round #275 (Div. 2) A,B,C,D的更多相关文章

  1. Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)

    题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列当中相邻两项差的绝对值的个数(指绝对值不同的个数 ...

  2. Codeforces Round #275 (Div. 1)A. Diverse Permutation 构造

    Codeforces Round #275 (Div. 1)A. Diverse Permutation Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 ht ...

  3. 构造 Codeforces Round #275 (Div. 2) C. Diverse Permutation

    题目传送门 /* 构造:首先先选好k个不同的值,从1到k,按要求把数字放好,其余的随便放.因为是绝对差值,从n开始一下一上, 这样保证不会超出边界并且以防其余的数相邻绝对值差>k */ /*** ...

  4. [Codeforces Round #275 (Div. 2)]B - Friends and Presents

    最近一直在做 codeforces ,总觉得已经刷不动 BZOJ 了? ——真是弱喵 你看连 Div.2 的 B 题都要谢谢题解,不是闲就是傻 显然我没那么闲 ╮(╯_╰)╭ 我觉得这题的想法挺妙的~ ...

  5. Codeforces Round #275 (Div. 2) C

    题目传送门:http://codeforces.com/contest/483/problem/C 题意分析:题目意思没啥好说的. 去搞排列列举必须TLE.那么就想到构造. 1.n.2.n-1.3.n ...

  6. Codeforces Round #275(Div. 2)-C. Diverse Permutation

    http://codeforces.com/contest/483/problem/C C. Diverse Permutation time limit per test 1 second memo ...

  7. Codeforces Round #275 (Div. 2)-A. Counterexample

    http://codeforces.com/contest/483/problem/A A. Counterexample time limit per test 1 second memory li ...

  8. Codeforces Round #275 Div.1 B Interesting Array --线段树

    题意: 构造一个序列,满足m个形如:[l,r,c] 的条件. [l,r,c]表示[l,r]中的元素按位与(&)的和为c. 解法: 线段树维护,sum[rt]表示要满足到现在为止的条件时该子树的 ...

  9. Codeforces Round #275 (Div. 2)

    A. Counterexample 题意:给出l,r,找出使得满足l<a<b<c<r,同时满足a,b的最大公约数为1,b,c的最大公约数为1,且a,b的最大公约数不为1 因为题 ...

  10. Codeforces Round #275 (Div. 2) 题解

    A 题: 说的是在(LR) 之间找出ab互质 bc 互质 ac 不互质的 3个数 数据量小直接暴力 #include <iostream> #include <cstdio> ...

随机推荐

  1. 【BZOJ1713】[Usaco2007 China]The Bovine Accordion and Banjo Orchestra 音乐会 斜率优化

    [BZOJ1713][Usaco2007 China]The Bovine Accordion and Banjo Orchestra 音乐会 Description Input 第1行输入N,之后N ...

  2. Apache配置虚拟主机httpd-vhosts.conf

    一.配置虚拟主机需要3个文件  1.Apache/conf/httpd.conf 2.Apache/conf/extra/httpd-vhosts.conf (这个地版本的apache可能没有,可自己 ...

  3. Android官方架构组件介绍之LiveData

    LiveData LiveData是一个用于持有数据并支持数据可被监听(观察).和传统的观察者模式中的被观察者不一样,LiveData是一个生命周期感知组件,因此观察者可以指定某一个LifeCycle ...

  4. 在CentOS7下从0开始搭建docker并发布tomcat项目

    一切从0开始,我也是个小白: 1.检查你的系统是不是高于3.8的内核,如果没有请升级CentOS7或者Ubuntu 14 #uname -a 2.CentOS7下安装docker #yum -y in ...

  5. VirtualBox Guest Additions installation

    在使用VirtualBox为CentOS安装增强功能时,输出是: 文本: Verifying archive integrity... All good. Uncompressing VirtualB ...

  6. 小米范工具系列之六:小米范 web查找器2.x版本发布

    小米范web查找器是一款快速识别端口及服务的小工具. 此工具使用java 1.8以上版本运行. 下载地址:http://pan.baidu.com/s/1c1NDSVe  文件名web finder ...

  7. Openstack(十六)实现内外网结构

    类似于阿里云ECS主机的内外网(双网卡不通网段)的结构,最终实现内外网区分隔离. https://www.aliyun.com/product/ecs/?utm_medium=text&utm ...

  8. 解决下载ftp文件过程中,浏览器直接解析文件(txt,png等)的问题

    搭建了一个ftp服务器,供用户进行上传下载,在下载过程中发现,一些文件,例如txt,jpg,png,pdf等直接被浏览器解析了.在浏览器中显示其内容,没有下载. 下面通过网上查询得到一些解决方法: 最 ...

  9. makefile中ifeq与ifneq dev/null和dev/zero简介 dd命令

    ifeq语法是ifeq "<arg1>;" "<arg2>;"  ,功能是比较参数“arg1”和“arg2”的值是否相同,相同时为1 i ...

  10. testng日志 TestListenerAdapter

    TestListenerAdapter,空方法实现 ITestListener   创建自定义日志记录类 创建另一个新的类名为 CustomListener.java 在 C:\ > TestN ...