[洛谷P5136]sequence
题目大意:有$T(T\leqslant10^5)$组询问,每次求$A_n(n\leqslant10^{18})$:
$$
A_n=\left\lceil\left(\dfrac{\sqrt5+1}2\right)^n\right\rceil
$$
题解:通过打表看题解发现,这个序列是$2,3,5,7,\dots$,即$A_n=A_{n-1}+A_{n-2}-[n\equiv0\pmod2]$,题解中说可以记录三个信息矩阵快速幂一下,然后我并不会处理$[n\equiv0\pmod2]$(果然我最菜)
继续看下去,他说可以构造数列$F$,$F_n=F_{n-1}+F_{n-1}(F_1=1,F_2=3)$,$A_n=F_n+(n\bmod2)$,这样就可以过去了,复杂度$O(2^3T\log_2n)$
但是这样似乎感觉不够优秀,可以把转移矩阵分块预处理出来,$n\leqslant10^{18}<2^{60}$,可以$\sqrt{\sqrt n}$即$2^{15}$分一块,这样就可以在常数复杂度内求出一次的答案了,复杂度$O(4\times2^3T)$
更进一步的是,$F$为斐波那契数列,它在模一个数下有循环节,洛谷上有这么一道题,比如在$998244353$下为$1996488708$,这样就可以取模后分块,就可以只分成两块,减少常数,复杂度$O(2\times2^3T)$(但是我跑的比上一个慢。。。加了编译指令才比上一个快)
卡点:最开始以为矩阵的右下角不会有值
C++ Code:
#include <cstdio>
#include <cctype>
#define N 65537
const int mod = 998244353, cover = (1 << 16) - 1; namespace std {
struct istream {
#define M (1 << 23 | 3)
char buf[M], *ch = buf - 1;
inline istream() { fread(buf, 1, M, stdin); }
inline istream& operator >> (int &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
inline istream& operator >> (long long &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
#undef M
} cin;
struct ostream {
#define M (1 << 22 | 3)
char buf[M], *ch = buf - 1;
inline ostream& operator << (int x) {
if (!x) {*++ch = '0'; return *this;}
static int S[20], *top; top = S;
while (x) {*++top = x % 10 ^ 48; x /= 10;}
for (; top != S; --top) *++ch = *top;
return *this;
}
inline ostream& operator << (const char x) {*++ch = x; return *this;}
inline ~ostream() { fwrite(buf, 1, ch - buf + 1, stdout); }
#undef M
} cout;
} struct Matrix {
int s00, s01, s10, s11;
Matrix() { }
Matrix(int __00, int __01, int __10, int __11) : s00(__00), s01(__01), s10(__10), s11(__11) { }
inline Matrix operator * (const Matrix &rhs) {
#define M(l, r) static_cast<long long> (s##l) * rhs.s##r
#define C(ll, lr, rl, rr) (M(ll, lr) + M(rl, rr)) % mod
return Matrix(C(00, 00, 01, 10), C(00, 10, 01, 11), C(10, 00, 11, 10), C(10, 01, 11, 11));
#undef M
#undef calc
}
} base0[N], base1[N], ans(3, 1, 0, 0); void init() {
const Matrix I(1, 0, 0, 1);
#define work(x) \
*base##x = I; \
for (int i = 1; i < N; ++i) base##x[i] = base##x[i - 1] * __base##x;
const Matrix __base0(1, 1, 1, 0); work(0);
const Matrix __base1 = base0[N - 1]; work(1);
#undef work
} int Tim;
int main() {
init();
std::cin >> Tim;
while (Tim --> 0) {
static long long n;
static int res;
std::cin >> n; --n, n %= 1996488708;
res = (ans * base0[n & cover] * base1[n >> 16 & cover]).s01 + !(n & 1) - mod;
std::cout << res + (res >> 31 & mod) << '\n';
}
return 0;
}
[洛谷P5136]sequence的更多相关文章
- 洛谷 P3928 Sequence
题目描述 小强喜欢数列.有一天,他心血来潮,写下了三个长度均为n的数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种,波动数列. 阿米巴把他的喜好告诉了小强.小强便打算找出这三个数列内的最长波动数列. ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)
洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...
- 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)
题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...
- 洛谷P1432 倒水问题(CODEVS.1226)
To 洛谷.1432 倒水问题 题目背景 In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were co ...
- 洛谷P3459 [POI2007]MEG-Megalopolis [树链剖分]
题目传送门 MEG 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postma ...
- [洛谷P2852] [USACO06DEC]牛奶模式Milk Patterns
洛谷题目链接:[USACO06DEC]牛奶模式Milk Patterns 题目描述 Farmer John has noticed that the quality of milk given by ...
- [洛谷P3460] [POI2007]TET-Tetris Attack
洛谷题目链接:[POI2007]TET-Tetris Attack 题目描述 A puzzle called "Tetris Attack" has lately become a ...
- [洛谷P2048] [NOI2010] 超级钢琴
洛谷题目链接:[NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号 ...
随机推荐
- Elasticsearch5.x版本中对Text类型进行聚合时提示illegal_argument_exception
Having this field in my mapping "answer": { "type": "text", "fiel ...
- php实现图形计算器
存档: index.php <html> <head> <title>图形计算器开发</title> <meta http-equiv=" ...
- power sequece
- hdu2061 Treasure the new start, freshmen!(暴力简单题)
Treasure the new start, freshmen! Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/3276 ...
- (转)python+opencv实现动态物体追踪
原文链接:https://blog.csdn.net/cike14/article/details/50649811 import cv2 import numpy as np camera=cv2. ...
- 一学就会pip换镜像源
首先介绍一个国内好用的镜像站 阿里云 http://mirrors.aliyun.com/pypi/simple/ 豆瓣 http://pypi.douban.com/simple/ 清华大学 htt ...
- 该用哪个:Redis与Memcached之间如何选择呢?
华为云分布式缓存Redis5.0和Memcached都是华为云DCS的核心产品. 那么在不同的使用场景之下,如何选择Redis5.0和Memcached呢? 就由小编为大家进行详细的数据对比分析吧 R ...
- 简析Monte Carlo与TD算法的相关问题
Monte Carlo算法是否能够做到一步更新,即在线学习? 答案显然是不能,如果可以的话,TD算法还有何存在的意义?MC算法必须要等到episode结束后才可以进行值估计的主要原因在于对Return ...
- 【算法设计与数据结构】为何程序员喜欢将INF设置为0x3f3f3f3f?(转)
摘自https://blog.csdn.net/jiange_zh/article/details/50198097 在算法竞赛中,我们常常需要用到一个“无穷大”的值,对于我来说,大多数时间我会根据具 ...
- MySort试验记录
MySort试验记录 编写目标 结果代码 思路 将数组每一个项目的第三组数字抽出来并且排序成12345的顺序,并形成新数组k3. 把原数组的每一项与k3进行比较,每符合一项便输出一项,从而重新排序出新 ...