【BZOJ4654】【NOI2016】国王饮水记(动态规划,斜率优化)
【BZOJ4654】【NOI2016】国王饮水记(动态规划,斜率优化)
题面
题解
首先肯定是找性质。
明确一点,比\(h_1\)小的没有任何意义。
所以我们按照\(h\)排序,那么\(h_1\)就是当前\(1\)号位置的水量。
假设我们使用的次数不受到任何限制,我们思考怎么样才是最优。
首先每次只和一个合并一定比和多个合并更优。
假设有三个位置\(h_1\lt h_2\lt h_3\)
那么如果直接合并,答案是\((h_1+h_2+h_3)/3\)
如果每次合并一个,答案是\(((h_1+h_2)/2+h_3)/2=(h_1+h_2)/4+h_3/2\)
显然后者更优。
同理,通过后面那个式子,我们发现先和\(h_2\)合并比先和\(h_3\)合并更优。
所以,在合并次数不受到限制的时候,我们显然是从小往大,依次合并。
当次数不够的时候,我们肯定不能只合并一个位置,显然合并所有位置还是更优的。
那么,既然不能够一个个合并,所以只能够把若干次合并放在一起做。
因为每次和后面的若干个做完合并之后,这些一起合并的位置就可以直接丢掉了,
再因为从小往大合并更优,假设\(h_i\)已经有序,那么每次一定是和一段合并。
所以设\(f[i][j]\)表示前面\(i\)个位置合并了\(j\)次的最优值。
那么考虑转移\(f[i][j]=max((f[k][j-1]+\sum_{x\in[k+1,i]}h_x)/(i-k+1)\)
这样的复杂度\(O(n^2k)\),\(k\)是可以合并的次数。
把式子重写,\(\sum\)写成前缀和的形式,暂时忽略后面的枚举次数
\(f[i]=(f[k]+s[i]-s[k])/(i-k+1)\)
这个式子很像斜率:
\((s[i]-(s[k]-f[k]))/(i-(k-1))\)
相当于把前面所有已知状态看成一个点\((k-1,s[k]-f[k])\)
那么找到当前点\((i,s[i])\)到这个点的斜率,使其斜率最大,可以斜率优化解决。
这样可以在凸包上三分计算,时间复杂度\(O(nklog_3n)\)
因为给定的高精小数库还有一个\(O(p)\)的复杂度,所以整个的复杂度是\(O(nkplogn)\)
同时还发现具有决策单调性,所以可以做到\(O(nkp)\)
决策单调性的证明大概是这样的,假设当位置是\((i,s[i])\)
最优转移是\((x1,y1)\),存在一个不优的转移\((x2,y2)\),
根据题目条件,有\(i>x1>x2,s[i]>y1>y2,s[i]>i,y1>x1,y2>x2\)
一下个位置至少是\((i+1,s[i]+i)\),然后把斜率的式子写一写发现\((x1,y1)\)仍然更优。
现在可以做到\(O(nkp)\),但是这样的复杂度远远不够。
继续挖掘性质。
发现有一个条件我们还没有怎么使用,即所有\(h_i\)互不相等。
那么我们可以得到一个条件:每次转移的区间长度不会大于上一次转移的区间长度。
感性的证明就是越往后走高度越大,显然拿更少的位置来平分会更优。
或者可以假设一下区间的长度,然后计算一下结果就好了。
或者假如后面那个区间长度大于前面这个区间,那么把后面那个区间的最前面那个位置分给前面这一段一定更优。
还有一个奇怪的条件:长度大于\(1\)的区间个数不会超过\(O(log\frac{nh}{\Delta})\),其中\(\Delta=min(h_i-h_{i-1})\)
证明?我不会我不会,可以参考这里的证明
那么这样子,只需要\(dp\)大概\(14\)层就好啦。(参考征途或者序列分割之类的题目)
完整的代码戳这里
阉割版本。毕竟放个700行的代码翻都翻不完
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int MAX=8080;
Decimal ans;
int n,K,p,h[MAX],zy[MAX][15],s[MAX],tot;
int Q[MAX],H,T;
double f[MAX][15];
struct Node{double x,y;}q[MAX];
double Slope(Node a,Node b){return (a.y-b.y)/(a.x-b.x);}
Decimal Calc(int i,int j)
{
if(!j)return h[1];
return (Calc(zy[i][j],j-1)+s[i]-s[zy[i][j]])/(i-zy[i][j]+1);
}
int main()
{
n=read();K=read();p=read();h[tot=1]=read();
for(int i=2;i<=n;++i)
{
h[i]=read();
if(h[i]>h[1])h[++tot]=h[i];
}
n=tot;sort(&h[1],&h[n+1]);
for(int i=1;i<=n;++i)s[i]=s[i-1]+h[i];
K=min(K,n);
for(int i=1;i<=n;++i)f[i][0]=h[1];
int lim=min(K,14);
for(int j=1;j<=lim;++j)
{
Q[H=T=1]=1;
for(int i=1;i<=n;++i)q[i]=(Node){i-1,s[i]-f[i][j-1]};
for(int i=2;i<=n;++i)
{
Node u=(Node){i,s[i]};
while(H<T&&Slope(u,q[Q[H]])<Slope(u,q[Q[H+1]]))++H;
zy[i][j]=Q[H];f[i][j]=(s[i]-s[Q[H]]+f[Q[H]][j-1])/(i-Q[H]+1);
while(H<T&&Slope(q[Q[T]],q[Q[T-1]])>Slope(q[Q[T]],q[i]))--T;
Q[++T]=i;
}
}
int m=n-K+lim,pos;double mx=0;
for(int j=0;j<=lim;++j)
if(f[m][j]>mx)mx=f[m][j],pos=j;
ans=Calc(m,pos);
for(int i=m+1;i<=n;++i)ans=(ans+h[i])/2;
cout<<ans.to_string(p<<1)<<endl;
return 0;
}
【BZOJ4654】【NOI2016】国王饮水记(动态规划,斜率优化)的更多相关文章
- [UOJ#223][BZOJ4654][Noi2016]国王饮水记
[UOJ#223][BZOJ4654][Noi2016]国王饮水记 试题描述 跳蚤国有 n 个城市,伟大的跳蚤国王居住在跳蚤国首都中,即 1 号城市中.跳蚤国最大的问题就是饮水问题,由于首都中居住的跳 ...
- BZOJ4654 NOI2016国王饮水记(动态规划+三分)
有很多比较显然的性质.首先每个城市(除1外)至多被连通一次,否则没有意义.其次将城市按水位从大到小排序后,用以连通的城市集合是一段前缀,并且不应存在比1城市还小的.然后如果确定了选取的城市集合,每次选 ...
- luogu P1721 [NOI2016]国王饮水记 斜率优化dp 贪心 决策单调性
LINK:国王饮水记 看起来很不可做的样子. 但实际上还是需要先考虑贪心. 当k==1的时候 只有一次操作机会.显然可以把那些比第一个位置小的都给扔掉. 然后可以得知剩下序列中的最大值一定会被选择. ...
- uoj233/BZOJ4654/洛谷P1721 [Noi2016]国王饮水记 【dp + 斜率优化】
题目链接 uoj233 题解 下面不加证明地给出几个性质: 小于\(h[1]\)的城市一定是没用的 任何城市联通包含\(1\)且只和\(1\)联通一次 联通顺序从小到大最优 单个联通比多个一起联通要优 ...
- BZOJ4654/UOJ223 [Noi2016]国王饮水记
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- P1721 [NOI2016] 国王饮水记 题解
蒟蒻的第一篇黑题题解,求过. 题目链接 题意描述 这道题用简洁的话来说,就是: 给你 \(n\) 个数字,你可以让取其中任意若干个数字,每次操作,都会使所有取的数字变为取的数字的平均数,并且你最多只能 ...
- [Noi2016]国王饮水记
来自FallDream的博客,未经允许,请勿转载,谢谢. 跳蚤国有 n 个城市,伟大的跳蚤国王居住在跳蚤国首都中,即 1 号城市中.跳蚤国最大的问题就是饮水问题,由于首都中居住的跳蚤实在太多,跳蚤国王 ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- *UOJ#223. 【NOI2016】国王饮水记
$n \leq 8000$的数列,问不超过$m \leq 1e9$次操作后第一个数字最大是多少.操作:选一些数,把他们变成他们的平均值.需要保留$p \leq 3000$位小数,提供了一个小数高精度库 ...
随机推荐
- macOS 10.14 Mojave Apache设置:多个PHP版本
[18/6/2018更新]由于Homebrew/php点击在2018年3月底被弃用,并将所有PHP公式移动到Homebrew/core,我们已经重新设计了我们的指南,使用这个新的水龙头. 如果您过去一 ...
- BZOJ3174. [TJOI2013]拯救小矮人(dp)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3174 题解 其实此题并不需要那么多YY的部分. 我们考虑若干个小矮人逃出的顺序.若跳出的 ...
- ubuntu的学习教程(常用操作)
摘要 最近在学习linux,把自己学习过程中遇到的常用操作以及一些有助于理解的内容记录下来.我主要用的是ubuntu系统 命令提示符 '~' 这个是指用户的家目录,用户分为root用户和普通用户,ro ...
- 【Excel函数】如何在excle区分一列数字是否连续
需求:区分这批卡号,哪些在一个号段 数据源: 89860616090033685544898606160900336855518986061609003368556989860616090033685 ...
- 微信小程序模板消息群发解决思路
基于微信的通知渠道,微信为开发者提供了可以高效触达用户的模板消息能力,以便实现服务的闭环并提供更佳的体验.(微信6.5.2及以上版本支持模板功能.低于该版本将无法收到模板消息.) 模板推送位置:服务通 ...
- 你的第一个接口测试:Python 接口测试
前言: 首先我们先明确一个概念,什么叫接口.什么叫接口测试? 接口的全称叫[Application Programming Interface 又叫API],是提供应用程序与开发人员基于某软件或硬件得 ...
- hive的简单使用
一.一些说明 1.支持的操作 hive 默认不支持updata 和 delete操作 insert也是执行缓慢,主要用于数据的计算 hive 数据类型---字符串,大部分与java一致. 2.内外表的 ...
- Python 中的实用数据挖掘
本文是 2014 年 12 月我在布拉格经济大学做的名为‘ Python 数据科学’讲座的笔记.欢迎通过 @RadimRehurek 进行提问和评论. 本次讲座的目的是展示一些关于机器学习的高级概念. ...
- pygame (1) 移动小乌龟
小乌龟图片素材: 第一个简单的小游戏: 小乌龟会不断的移动,并且每当到达窗口的左右边界的时候,还会自动的掉头. 源码: import pygame import sys# 导入sys模块,退出时使用 ...
- CS小分队第二阶段冲刺站立会议(5月29日)
昨日成果:昨天在为主界面设计自主添加应用快捷方式功能,连续遇到困难. 遇到的困难:1.string字符串数组无法在单击事件中使用,提示string无法在eventargs中检索,尝试了各种方式都不行 ...