【bzoj4520】K远点对
Description
给你平面内\(n\)个点的坐标,求欧氏距离下第\(k\)远的点对
Solution
因为kd其实。。严格来说挺不熟的用的太少了qwq
然后不知道为啥第一反应凸包直径取\(k\)次qwq然而这样有一个问题就是。。取完一次之后删点不知道要删直径中两个点中的哪一个,所以。。不太靠谱
正解应该是kd-tree
其实这题挺暴力的,时间复杂度也很玄学(不会算qwq)貌似kd的题复杂度就没有不玄学的。。
因为不知道答案是哪两个点,初步的想法是我们干脆维护一个大小为\(k\)的小根堆,对于每一个点,都在kd-tree里面查以其作为两个点之一的点对的前\(k\)大距离,如果说比小根堆的堆顶更优那就用当前的结果把小根堆的堆顶替换掉,这样对每一个点都操作一遍之后,堆顶就是答案了
然而实际上,我们会发现一个点对会被计算两次,所以我们其实应该维护一个\(k*2\)的堆,查找也是\(k*2\)而不是\(k\)
再稍微具体一点的话在kd中查找的流程大概是这样的:
1、计算当前点与固定点的距离,如果比堆顶优就替换
2、用一个估值函数分别计算两个子树的可能最远距离\(lval\)和\(rval\)
3、如果说\(lval>rval\)则优先遍历左子树,否则优先遍历右子树
4、遍历一个子树的前提条件是:当前堆中不足\(k*2\)个元素或者该子树的估值函数返回值优于堆顶
接下来就是这个估值函数要怎么写了:
(这里提供的这种写法比较。。水。。其实如果有心去卡的话貌似是可以卡掉的qwq)
我们考虑分别记录该子树内的\(x\)的最大最小值和\(y\)的最大最小值,然后估值函数就返回\(x\)的最大最小值与固定点的\(x\)的最大差值的平方+\(y\)的最大最小值与固定点的\(y\)的最大差值的平方,这样我们就能得到一个最优情况下的最大值了
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
using namespace std;
const int N=100010,inf=2147483647;
int which;
ll sqr(ll x){return x*x;}
struct Dot{
int data[2];
Dot(){}
Dot(int x,int y){data[0]=x; data[1]=y;}
friend ll dis(Dot a,Dot b){return sqr(a.data[0]-b.data[0])+sqr(a.data[1]-b.data[1]);}
friend bool operator < (Dot a,Dot b){return a.data[which]<b.data[which];}
}a[N];
int n,k,tot;
bool cmp(ll x,ll y){return x>y;}
priority_queue<ll,vector<ll>,greater<ll> > q;
namespace Kd{/*{{{*/
int ch[N][2],mnx[N],mxx[N],mny[N],mxy[N];
int rt;
void pushup(int x){
mxx[x]=mnx[x]=a[x].data[0]; mxy[x]=mny[x]=a[x].data[1];
if (ch[x][0]){
mxx[x]=max(mxx[x],mxx[ch[x][0]]);
mxy[x]=max(mxy[x],mxy[ch[x][0]]);
mnx[x]=min(mnx[x],mnx[ch[x][0]]);
mny[x]=min(mny[x],mny[ch[x][0]]);
}
if (ch[x][1]){
mxx[x]=max(mxx[x],mxx[ch[x][1]]);
mxy[x]=max(mxy[x],mxy[ch[x][1]]);
mnx[x]=min(mnx[x],mnx[ch[x][1]]);
mny[x]=min(mny[x],mny[ch[x][1]]);
}
}
int _build(int l,int r,int now){
if (l>r) return 0;
int mid=l+r>>1;
which=now;
nth_element(a+l,a+mid,a+r+1);
ch[mid][0]=_build(l,mid-1,now^1);
ch[mid][1]=_build(mid+1,r,now^1);
pushup(mid);
return mid;
}
ll val(int x,Dot &delta){
if (!x) return -1;
ll ret=max(sqr(delta.data[0]-mnx[x]),sqr(delta.data[0]-mxx[x]))+
max(sqr(delta.data[1]-mny[x]),sqr(delta.data[1]-mxy[x]));
return ret;
}
void build(int n){rt=_build(1,n,0);}
void _query(int x,int k,Dot &delta){
if (!x) return;
ll d=dis(delta,a[x]),lval=val(ch[x][0],delta),rval=val(ch[x][1],delta);
if (q.size()<k) q.push(d);
else{
if (d>q.top())
q.pop(),q.push(d);
}
if (lval>rval){
if (lval>q.top()||q.size()<k) _query(ch[x][0],k,delta);
if (rval>q.top()||q.size()<k) _query(ch[x][1],k,delta);
}
else{
if (rval>q.top()||q.size()<k) _query(ch[x][1],k,delta);
if (lval>q.top()||q.size()<k) _query(ch[x][0],k,delta);
}
}
void query(Dot &delta,int k){_query(rt,k,delta);}
}/*}}}*/
int main(){
#ifndef ONLINE_JUDGE
freopen("2.in","r",stdin);
#endif
scanf("%d%d",&n,&k);
for (int i=1;i<=n;++i)
scanf("%d%d",&a[i].data[0],&a[i].data[1]);
k*=2;
Kd::build(n);
tot=0;
for (int i=1;i<=n;++i) Kd::query(a[i],k);
printf("%lld\n",q.top());
}
【bzoj4520】K远点对的更多相关文章
- bzoj4520 K远点对
题目链接 思路 这个"\(K\)远"点对一直理解成了距离第\(K\)大的点对\(233\). 要求第\(K\)远,那么我们只要想办法求出来最远的\(K\)个点对就可以了. 用一个大 ...
- 【bzoj4520】 Cqoi2016—K远点对
http://www.lydsy.com/JudgeOnline/problem.php?id=4520 (题目链接) 题意 求平面内第K远点对的距离. Solution 左转题解:jump 细节 刚 ...
- 【BZOJ4520】K远点对(KD-Tree)
[BZOJ4520]K远点对(KD-Tree) 题面 BZOJ 洛谷 题解 考虑暴力. 维护一个大小为\(K\)的小根堆,然后每次把两个点之间的距离插进去,然后弹出堆顶 这样子可以用\(KD-Tree ...
- 【BZOJ4520】[Cqoi2016]K远点对 kd-tree+堆
[BZOJ4520][Cqoi2016]K远点对 Description 已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对. Input 输入文件第一行为用空格隔开的两个整数 N, K.接下来 ...
- [bzoj4520][Cqoi2016]K远点对_KD-Tree_堆
K远点对 bzoj-4520 Cqoi-2016 题目大意:已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对. 注释:$1\le n\le 10^5$,$1\le k\le 100$,$k\l ...
- BZOJ4520 [Cqoi2016]K远点对
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 【BZOJ-4520】K远点对 KD-Tree + 堆
4520: [Cqoi2016]K远点对 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 490 Solved: 237[Submit][Status ...
- BZOJ4520:[CQOI2016]K远点对(K-D Tree)
Description 已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对. Input 输入文件第一行为用空格隔开的两个整数 N, K.接下来 N 行,每行两个整数 X,Y,表示一个点 的坐标 ...
- [BZOJ4520][Cqoi2016]K远点对 kd-tree 优先队列
4520: [Cqoi2016]K远点对 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1285 Solved: 708[Submit][Statu ...
随机推荐
- js判断PC端 移动端 并跳转到对应页面
一.PC端跳转到移动端 html页面: <script>var webroot="/",catid="{$catid}",murl="m/ ...
- VS默认的类前缀(访问控制符)是internal
VS默认的类前缀(访问控制符)是internal 大家都知道VS默认新建的class的时候,class前面是什么都没有的,按照规则,这个class的可见性是internal,但是说实话,很多人包括我在 ...
- 修改Linux系统下的最大文件描述符限制
通常我们通过终端连接到linux系统后执行ulimit -n 命令可以看到本次登录的session其文件描述符的限制,如下: $ulimit -n1024 当然可以通过ulimit -SHn 1024 ...
- IO多路复用(二) -- select、poll、epoll实现TCP反射程序
接着上文IO多路复用(一)-- Select.Poll.Epoll,接下来将演示一个TCP回射程序,源代码来自于该博文https://www.cnblogs.com/Anker/p/3258674.h ...
- leetcode个人题解——#39 Combination Sum
思路:先对数据进行排序(看评论给的测试数据好像都是有序数组了,但题目里没有给出这个条件),然后回溯加剪枝即可. class Solution { public: ; vector<vector& ...
- ubuntu 设置全局代理
ubuntu配置shadowsocks全局代理 在mac.window平台下都有shadowsocks客户端,因此这两个平台不叙述太多,现在介绍ubuntu下的配置方法. 1.安装python lin ...
- Wampserver 修改根目录
wampserver 默认根目录在 www 文件夹下 修改根目录方法如下: 1. 在打算存放项目或代码的位置新建文件夹(我建在了C:/MyProject) 2. 打开 httpd.conf 文件(该文 ...
- MySQL Proxy和 Amoeba 工作机制浅析
MySQL Proxy处于客户端应用程序和MySQL服务器之间,通过截断.改变并转发客户端和后端数据库之间的通信来实现其功能,这和WinGate 之类的网络代理服务器的基本思想是一样的.代理服务器是和 ...
- 使用Node.js 搭建http服务器 http-server 模块
1. 安装 http-server 模块 npm install http-server -g 全局安装 2.在需要的文件夹 启动 http-server 默认的端口是8080 可以使 ...
- Scrum立会报告+燃尽图(十月二十六日总第十七次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...