Description

如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串,则我们称该字符串的这种拆分是优秀的。例如,对于字符串 aabaabaa,如果令 A=aabA=aab,B=aB=a,我们就找到了这个字符串拆分成 AABBAABB 的一种方式。一个字符串可能没有优秀的拆分,也可能存在不止一种优秀的拆分。比如我们令 A=aA=a,B=baaB=baa,也可以用 AABBAABB 表示出上述字符串;但是,字符串 abaabaa 就没有优秀的拆分。现在给出一个长度为nn 的字符串 SS,我们需要求出,在它所有子串的所有拆分方式中,优秀拆分的总个数。这里的子串是指字符串中连续的一段。以下事项需要注意:出现在不同位置的相同子串,我们认为是不同的子串,它们的优秀拆分均会被记入答案。在一个拆分中,允许出现 A=BA=B。例如 cccc 存在拆分 A=B=cA=B=c。字符串本身也是它的一个子串。

Input

每个输入文件包含多组数据。输入文件的第一行只有一个整数 TT,表示数据的组数。保证 1≤T≤101≤T≤10。接下来 TT 行,每行包含一个仅由英文小写字母构成的字符串 SS,意义如题所述。

Output

输出 TT 行,每行包含一个整数,表示字符串 SS 所有子串的所有拆分中,总共有多少个是优秀的拆分。

Sample Input

4

aabbbb

cccccc

aabaabaabaa

bbaabaababaaba

Sample Output

3

5

4

7

我们用 S[i,j]S[i,j] 表示字符串 SS 第 ii 个字符到第 jj 个字符的子串(从 11 开始计数)。第一组数据中,共有 33 个子串存在优秀的拆分:S[1,4]=aabbS[1,4]=aabb,优秀的拆分为 A=aA=a,B=bB=b;S[3,6]=bbbbS[3,6]=bbbb,优秀的拆分为A=bA=b,B=bB=b;S[1,6]=aabbbbS[1,6]=aabbbb,优秀的拆分为 A=aA=a,B=bbB=bb。而剩下的子串不存在优秀的拆分,所以第一组数据的答案是 33。第二组数据中,有两类,总共 44 个子串存在优秀的拆分:对于子串S[1,4]=S[2,5]=S[3,6]=ccccS[1,4]=S[2,5]=S[3,6]=cccc,它们优秀的拆分相同,均为A=cA=c,B=cB=c,但由于这些子串位置不同,因此要计算 33 次;对于子串S[1,6]=ccccccS[1,6]=cccccc,它优秀的拆分有 22 种:A=cA=c,B=ccB=cc 和A=ccA=cc,B=cB=c,它们是相同子串的不同拆分,也都要计入答案。所以第二组数据的答案是 3+2=53+2=5。第三组数据中,S[1,8]S[1,8] 和 S[4,11]S[4,11] 各有 22种优秀的拆分,其中 S[1,8]S[1,8] 是问题描述中的例子,所以答案是2+2=42+2=4。第四组数据中,S[1,4]S[1,4],S[6,11]S[6,11],S[7,12]S[7,12],S[2,11]S[2,11],S[1,8]S[1,8] 各有 11 种优秀的拆分,S[3,14]S[3,14] 有 22 种优秀的拆分,所以答案是 5+2=75+2=7。

Solution

先求两个数组,一个是 \(st[i]\) 代表以 \(i\) 开头的AA串的方案数, \(ed[i]\) 代表以 \(i\) 结尾的AA串的方案数,那么最后的答案就是 \(\sum_{i=1}^{n-1}ed[i]*st[i+1]\)

怎么求这两个数组。枚举AA串中A的长度,标记一些下标为这长度的倍数的关键点;依次考虑相邻两个关键点,找到从这两个关键点开始,一起向前走,最远能走多长使得每一步经过的字符是相同的(就是找最长的向前延伸的相同的串);同时也找个向后的。找这个东西其实就是正的串的两个后缀的LCP和反的串的两个后缀的LCP,预处理ST表维护。然后如果向前向后的长度加起来大于枚举的A的长度,那么这两个关键点周围一定有AA串的存在(画个图,想一想)

标记一下,最后用前缀和统计就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=30000+10;
int T,n,m,SA1[MAXN],SA2[MAXN],cnt[MAXN],nxt[MAXN],height1[MAXN],height2[MAXN],Mn[2][21][MAXN],st[MAXN],ed[MAXN],lg[MAXN],rk1[MAXN],rk2[MAXN];
ll ans;
char s[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void GetSA(int *SA,int *height,int *rk)
{
m=300;
memset(nxt,0,sizeof(nxt));
for(register int i=1;i<=n;++i)rk[i]=s[i];
for(register int i=1;i<=m;++i)cnt[i]=0;
for(register int i=1;i<=n;++i)cnt[rk[i]]++;
for(register int i=1;i<=m;++i)cnt[i]+=cnt[i-1];
for(register int i=n;i>=1;--i)SA[cnt[rk[i]]--]=i;
for(register int k=1,ps;k<=n;k<<=1)
{
ps=0;
for(register int i=n-k+1;i<=n;++i)nxt[++ps]=i;
for(register int i=1;i<=n;++i)
if(SA[i]>k)nxt[++ps]=SA[i]-k;
for(register int i=1;i<=m;++i)cnt[i]=0;
for(register int i=1;i<=n;++i)cnt[rk[i]]++;
for(register int i=1;i<=m;++i)cnt[i]+=cnt[i-1];
for(register int i=n;i>=1;--i)SA[cnt[rk[nxt[i]]]--]=nxt[i];
for(register int i=1;i<=n;++i)std::swap(nxt[i],rk[i]);
rk[SA[1]]=1,ps=1;
for(register int i=2;i<=n;rk[SA[i]]=ps,++i)
if(nxt[SA[i]]!=nxt[SA[i-1]]||nxt[SA[i]+k]!=nxt[SA[i-1]+k])ps++;
if(ps>=n)break;
m=ps;
}
for(register int i=1,j,k=0;i<=n;height[rk[i++]]=k)
for(k=k?k-1:k,j=SA[rk[i]-1];s[i+k]==s[j+k];++k);
}
inline void init(int *height,int tp)
{
for(register int i=1;i<=n;++i)Mn[tp][0][i]=height[i];
for(register int j=1;j<20;++j)
for(register int i=1;i+(1<<j-1)<=n;++i)Mn[tp][j][i]=min(Mn[tp][j-1][i],Mn[tp][j-1][i+(1<<j-1)]);
}
inline int query(int tp,int l,int r)
{
if(l>r)std::swap(l,r);l++;
int k=lg[r-l+1];
return min(Mn[tp][k][l],Mn[tp][k][r-(1<<k)+1]);
}
int main()
{
for(register int i=1;i<MAXN;++i)lg[i]=log(i)/log(2);
read(T);
while(T--)
{
scanf("%s",s+1);
n=strlen(s+1);ans=0;
memset(st,0,sizeof(st));
memset(ed,0,sizeof(ed));
GetSA(SA1,height1,rk1);init(height1,0);
std::reverse(s+1,s+n+1);
GetSA(SA2,height2,rk2);init(height2,1);
std::reverse(rk2+1,rk2+n+1);
for(register int len=1;len<=(n>>1);++len)
for(register int l=len,r=l+len,x,y;r<=n;l+=len,r+=len)
{
x=min(query(1,rk2[l],rk2[r]),len);
y=min(query(0,rk1[l],rk1[r]),len);
if(x+y-1<len)continue;
st[l-x+1]++,st[l+y-len+1]--;
ed[r-x+len]++,ed[r+y]--;
}
for(register int i=1;i<=n;++i)st[i]+=st[i-1],ed[i]+=ed[i-1];
for(register int i=1;i<=n;++i)ans+=1ll*ed[i]*st[i+1];
write(ans,'\n');
}
return 0;
}

【刷题】BZOJ 4650 [Noi2016]优秀的拆分的更多相关文章

  1. [BZOJ]4650: [Noi2016]优秀的拆分

    Time Limit: 30 Sec  Memory Limit: 512 MB Description 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串, ...

  2. BZOJ.4650.[NOI2016]优秀的拆分(后缀数组 思路)

    BZOJ 洛谷 令\(st[i]\)表示以\(i\)为开头有多少个\(AA\)这样的子串,\(ed[i]\)表示以\(i\)结尾有多少个\(AA\)这样的子串.那么\(Ans=\sum_{i=1}^{ ...

  3. BZOJ 4650 [Noi2016]优秀的拆分:后缀数组

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4650 题意: 给你一个字符串s,问你s及其子串中,将它们拆分成"AABB&quo ...

  4. BZOJ 4650 [Noi2016]优秀的拆分 ——后缀数组

    我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以 ...

  5. [NOI2016]优秀的拆分&&BZOJ2119股市的预测

    [NOI2016]优秀的拆分 https://www.lydsy.com/JudgeOnline/problem.php?id=4650 题解 如果我们能够统计出一个数组a,一个数组b,a[i]表示以 ...

  6. 【BZOJ4560】[NOI2016]优秀的拆分

    [BZOJ4560][NOI2016]优秀的拆分 题面 bzoj 洛谷 题解 考虑一个形如\(AABB\)的串是由两个形如\(AA\)的串拼起来的 那么我们设 \(f[i]\):以位置\(i\)为结尾 ...

  7. luogu1117 [NOI2016]优秀的拆分

    luogu1117 [NOI2016]优秀的拆分 https://www.luogu.org/problemnew/show/P1117 后缀数组我忘了. 此题哈希可解决95分(= =) 设\(l_i ...

  8. [UOJ#219][BZOJ4650][Noi2016]优秀的拆分

    [UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...

  9. [NOI2016]优秀的拆分(SA数组)

    [NOI2016]优秀的拆分 题目描述 如果一个字符串可以被拆分为 \(AABB\) 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 \(aabaaba ...

随机推荐

  1. 博弈论(Game Theory) - 04 - 纳什均衡

    博弈论(Game Theory) - 04 - 纳什均衡 开始 纳什均衡和最大最小定理是博弈论的两大基石. 博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论. ...

  2. Appium+python的单元测试框架unittest(2)——fixtures(转)

    (原文:https://www.cnblogs.com/fancy0158/p/10046333.html) unittest提供的Fixtures用以在测试执行前和执行后进行必要的准备和清理工作,可 ...

  3. 理解学习Springboot(一)

    Springboot有何优势呢,网上一大推,这里就不写了. 一.配置maven 1.在maven官网下载maven,http://maven.apache.org/download.cgi 2.将下载 ...

  4. CentOS7.2安装mysql-5.7.19多实例

    安装多实例之前首先需要先安装mysql,这里就不介绍如何安装mysql了,参考前面的博客:https://www.cnblogs.com/hei-ma/p/9505509.html 安装多实例之前需要 ...

  5. 算法与AI的暗黑面:3星|《算法的陷阱:超级平台、算法垄断与场景欺骗》

    算法的陷阱:超级平台.算法垄断与场景欺骗 全书讲算法与AI的暗黑面:价格歧视.导致算法军备竞赛.导致商家降价冲动降低.平台作恶(向劣质商家收费导致品质下降.与开发商一起分析用户隐私)等. 作者从商业. ...

  6. 17 Tips For Writing An Excellent Email Subject Line

    Out of the billions of emails that are sent every day, how can you make sure that yours stands out? ...

  7. eclipse技巧-快捷键

    ctrl + 1,快速修复 ctrl + d, 快捷删除行 shift + Enter,快速移动光标到下一行 ctrl + F11,运行代码 alt + ↑/↓,快速移动行 ctrl + alt + ...

  8. java面向对象的有序数组和无序数组的比较

    package aa; class Array{ //定义一个有序数组 private long[] a; //定义数组长度 private int nElems; //构造函数初始化 public ...

  9. javascript提高篇

    本章简介 本章内容比较少,有三个分享的知识.你可能都看过了,因为网上也有很多提问和解答,如果没看过或者没搞懂,你可以再看看这篇文章. 1. 数组去重方法的演变    --  走向代码缩短化 2. [] ...

  10. TDGA-需求分析

    李青:绝对的技术控,团队中扮演“猪”的角色,勤干肯干,是整个团队的主心骨,课上紧跟老师的步伐,下课谨遵老师的指令,课堂效率高,他的编程格言“没有编不出来的程序,只有解决不了的bug”. 胡金辉:半两油 ...