L202
Yuan Cao’s teenage years were hardly typical. By age 18, he had already graduated from high school, completed an undergraduate degree at the University of Science and Technology of China in Hefei, and travelled to the United States to begin his PhD. He hasn’t slowed down since: this year, aged just 21, Cao had two papers published on strange behaviour in atom-thick layers of carbon that have spurred a new field of physics. Cao admits that his situation is unusual, but says he isn’t special. After all, he did spend a full four years at university: “I just skipped some of the boring stuff in middle school.”
Pablo Jarillo-Herrero’s group at the Massachusetts Institute of Technology (MIT) in Cambridge was already layering and rotating sheets of carbon at different angles when Cao joined the lab in 2014. Cao’s job was to investigate what happened in two-layer stacks when one graphene sheet was twisted only slightly with respect to the other, which one theory predicted would radically change the material’s behaviour.
Many physicists were sceptical about the idea. But when Cao set out to create the subtly twisted stacks, he spotted something strange. Exposed to a small electric field and cooled to 1.7 degrees above absolute zero, the graphene — which ordinarily conducts electricity — became an insulator . That by itself was surprising. “We knew already that it would have a big impact on the community,” says Cao. But the best was yet to come: with a slight tweak to the field, the twisted sheets became a superconductor, in which electricity flowed without resistance . Seeing the effect in a second sample convinced the team that it was real.
The ability to coax atom-thick carbon into a complex electronic state through a simple rotation now has physicists clamouring to engineer exciting behaviour in other twisted 2D materials. Some even hope that graphene could shed light on how more-complex materials super-conduct at much higher temperatures. “There are so many things we can do,” says Cory Dean, a physicist at Columbia University in New York City. “The opportunities at hand now are almost overwhelming.”
Hitting graphene’s ‘magic angle’ — a rotation between parallel sheets of around 1.1° — involved some trial and error, but Cao was soon able to do it reliably. His experimental skill was crucial, says Jarillo-Herrero. Cao pioneered a method of tearing a single sheet of graphene so that he could create a stack composed of two layers with identical orientation, from which he could then fine-tune alignment. He also tweaked the cryogenic system to reach a temperature that allowed superconductivity to emerge more clearly.
Cao loves to take things apart and rebuild them. At heart, he is “a tinkerer”, his supervisor says. On his own time, this means photographing the night sky using homemade cameras and telescopes — pieces of which usually lie strewn across Cao’s office. “Every time I go in, it’s a huge mess, with computers taken apart and pieces of telescope all over his desk,” says Jarillo-Herrero.
Despite his youth and shy manner, colleagues say that Cao’s maturity shines through in his persistence. Having missed out by a whisker on a place in MIT’s physics graduate programme, for example, Cao found a way to pursue the subject by joining Jarillo-Herrero’s team through the electrical-engineering department. Cao also shrugged off a disappointing start to his PhD, after realizing that seemingly exciting data that he had spent six months trying to understand were due to a quirk of the experimental set-up. “He wasn’t happy, but he just rolled up his sleeves and continued working,” Jarillo-Herrero says.
Cao, now 22, doesn’t yet know where he’d like his career to lead. “On magic-angle graphene, we still have a lot of things to do,” he says. But universities around the world are already eyeing him for not only postdoctorate jobs, but also faculty positions, says physicist Changgan Zeng, Cao’s undergraduate supervisor and mentor at the University of Science and Technology of China. “Among condensed-matter physicists in China, everybody knows his name,” Zeng says. The university would gladly have him back, but Zeng expects that Cao will stay in the United States for now. “There, it’s easier to see the stars.”
L202的更多相关文章
- Linux下0号进程的前世(init_task进程)今生(idle进程)----Linux进程的管理与调度(五)【转】
前言 Linux下有3个特殊的进程,idle进程(PID = 0), init进程(PID = 1)和kthreadd(PID = 2) idle进程由系统自动创建, 运行在内核态 idle进程其pi ...
- linux的0号进程和1号进程
linux的 0号进程 和 1 号进程 Linux下有3个特殊的进程,idle进程(PID = 0), init进程(PID = 1)和kthreadd(PID = 2) * idle进程由系统自动创 ...
随机推荐
- js-template-art【三】js api
一.js api使用 1.template(filename, data) 根据模板名渲染模板. var html = template('tplScriptId', { value: 'aui' } ...
- mysql8新特性(一)
https://www.oschina.net/news/95325/mysql-8-0-ga-released http://blog.itpub.net/28218939/viewspace-21 ...
- centOS下升级python版本,详细步骤
1.可利用linux自带下载工具wget下载,如下所示:( 笔者安装的是最小centos系统,所以使用编译命令前,必须安装wget服务,读者如果安装的是界面centos系统,或者使用过编译工具则可跳 ...
- spring整合ehcache 注解实现查询缓存,并实现实时缓存更新或删除
写在前面:上一篇博客写了spring cache和ehcache的基本介绍,个人建议先把这些最基本的知识了解了才能对今天主题有所感触.不多说了,开干! 注:引入jar <!-- 引入ehcach ...
- 在Linux系统下统计当前文件夹下的文件个数、目录个数
1.统计当前文件夹下文件的个数,包括子文件夹里的 ls -lR|grep "^-"|wc -l 如下图: 2.统计文件夹下目录的个数,包括子文件夹里的 ls -lR|grep &q ...
- STM32的中断系统
STM32的中断系统 STM32具有十分强大的中断系统,将中断分为了两个类型:内核异常和外部中断.并将所有中断通过一个表编排起来,下面是stm32中断向量表的部分内容: 上图-3到6这个区域被标黑了, ...
- bzoj1610 / P2665 [USACO08FEB]连线游戏Game of Lines
P2665 [USACO08FEB]连线游戏Game of Lines 第一次写快读没判负数....(捂脸) 暴力$O(n^2)$求斜率,排序判重. 注意垂直方向的直线要特判. end. #inclu ...
- CF #505 B Weakened Common Divisor(数论)题解
题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...
- POJ 1062 昂贵的聘礼(最短路)题解
题意:中文题意不解释... 思路:交换物品使得费用最小,很明显的最短路,边的权值就是优惠的价格,可以直接用Dijkstra解决.但是题目中要求最短路路径中任意两个等级不能超过m,我们不能在连最短路的时 ...
- POJ 2486 Apple Tree(树形dp)
http://poj.org/problem?id=2486 题意: 有n个点,每个点有一个权值,从1出发,走k步,最多能获得多少权值.(每个点只能获得一次) 思路: 从1点开始,往下dfs,对于每个 ...