参考: http://blog.csdn.net/l18930738887/article/details/55000008

http://www.jianshu.com/p/19bb60b52dad

http://blog.csdn.net/sinat_33761963/article/details/62433234

import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
tf.summary.histogram(layer_name + '/weights', Weights)
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs
# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
# define placeholder for inputs to network
with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32, [None, 1],name='input_x')
ys = tf.placeholder(tf.float32, [None, 1],name='input_y') # add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None) # the error between prediciton and real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session()
merged = tf.summary.merge_all()
# save the logs
writer = tf.summary.FileWriter("logs/", sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(1000):
# training
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
result = sess.run(merged,
feed_dict={xs: x_data, ys: y_data})
writer.add_summary(result, i)

到运行python的所在目录下,打一下命令:

$ tensorboard --logdir="logs/"

再在网页中输入链接:127.0.1.1:6006 即可获得展示: 推荐使用friefox浏览器,我电脑上chrom浏览器打不开

比如,从他人处获得一个Graph,想看看它的结构,怎么弄?

Google提供了一个工具,TensorBoard,它能以图表的方式分析你在训练过程中汇总的各种数据,其中包括Graph结构。

所以我们可以简单的写几行Pyhton,加载Graph,只在logdir里,输出Graph结构数据,并可以查看其图结构。

可参考:http://www.tensorfly.cn/tfdoc/how_tos/summaries_and_tensorboard.html

https://www.tensorflow.org/get_started/summaries_and_tensorboard

代码如下:

import tensorflow as tf
from tensorflow.python.platform import gfile # 这是从二进制格式的pb文件加载模型
graph = tf.get_default_graph()
graphdef = graph.as_graph_def()
graphdef.ParseFromString(gfile.FastGFile("/data/TensorFlowAndroidMNIST/app/src/main/expert-graph.pb", "rb").read())
_ = tf.import_graph_def(graphdef, name="")
import tensorflow as tf
from tensorflow.python.platform import gfile
#这是从文件格式的meta文件加载模型
graph = tf.get_default_graph()
graphdef = graph.as_graph_def()
# graphdef.ParseFromString(gfile.FastGFile("/data/TensorFlowAndroidMNIST/app/src/main/expert-graph.pb", "rb").read())
# _ = tf.import_graph_def(graphdef, name="")
_ = tf.train.import_meta_graph("./InsightFace_iter_best_1950000.ckpt.meta")
summary_write = tf.summary.FileWriter("./" , graph)

然后再启动tensorboard:

tensorboard --logdir /data/TensorFlowAndroidMNIST/logdir --host 你的ip --port 你端口(默认6006)

一个打开pb文件的实例

import tensorflow as tf
from tensorflow.python.platform import gfile graph = tf.get_default_graph()
graphdef = graph.as_graph_def()
graphdef.ParseFromString(gfile.FastGFile("./log/mtcnn.pb", "rb").read())
_ = tf.import_graph_def(graphdef, name="") summary_write = tf.summary.FileWriter("./log" , graph)

TensorFlow基础笔记(9) Tensorboard可视化显示以及查看pb meta模型文件的方法的更多相关文章

  1. TensorFlow基础笔记(0) 参考资源学习文档

    1 官方文档 https://www.tensorflow.org/api_docs/ 2 极客学院中文文档 http://www.tensorfly.cn/tfdoc/api_docs/python ...

  2. TensorFlow基础笔记(3) cifar10 分类学习

    TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognit ...

  3. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  4. TensorFlow基础笔记(14) 网络模型的保存与恢复_mnist数据实例

    http://blog.csdn.net/huachao1001/article/details/78502910 http://blog.csdn.net/u014432647/article/de ...

  5. 【转】从Shell脚本内部将所有标准输出及标准错误显示在屏幕并同时写入文件的方法

    如果全部都要重定向的话每一条命令后面>>并不方便,可以这么做.在开头就声明 exec 1>>$log_file表示将脚本中所有的正确输出全部追加到$log_file,错误信息会 ...

  6. Tensorflow 搭建神经网络及tensorboard可视化

    1. session对话控制 matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([[2],[2]]) product = tf.matmul(m ...

  7. TensorFlow基础笔记(5) VGGnet_test

    参考 http://blog.csdn.net/jsond/article/details/72667829 资源: 1.相关的vgg模型下载网址 http://www.vlfeat.org/matc ...

  8. TensorFlow基础笔记(15) 编译TensorFlow.so,提供给C++平台调用

    参考 http://blog.csdn.net/rockingdingo/article/details/75452711 https://www.cnblogs.com/hrlnw/p/700764 ...

  9. TensorFlow基础笔记(0) tensorflow的基本数据类型操作

    import numpy as np import tensorflow as tf #build a graph print("build a graph") #生产变量tens ...

随机推荐

  1. select函数的并发限制和 poll 函数应用举例

    一.用select实现的并发服务器,能达到的并发数,受两方面限制 1.一个进程能打开的最大文件描述符限制.这可以通过调整内核参数.可以通过ulimit -n来调整或者使用setrlimit函数设置,  ...

  2. X86 寻址方式、AT&T 汇编语言相关知识、AT&T 与 Intel 汇编语言的比较、gcc 嵌入式汇编

    注:本分类下文章大多整理自<深入分析linux内核源代码>一书,另有参考其他一些资料如<linux内核完全剖析>.<linux c 编程一站式学习>等,只是为了更好 ...

  3. mysql 返回多列的方式

    SELECT * FROM (SELECT 'success' as _result) a,(SELECT @gid as gid) b;

  4. python标准库介绍——23 UserString 模块详解

    ==UserString 模块== (2.0 新增) ``UserString`` 模块包含两个类, //UserString// 和 //MutableString// . 前者是对标准字符串类型的 ...

  5. Eclipse中导入Git项目

    1.先将项目git到本地 2.导入刚刚git到本地项目 if(如果project带.calsspath .project 文件){ 直接用genaral导入或andorid project导入即可. ...

  6. angular.js快速入门 hello world

    我们整个系列的学习会去写一个简单blog雏形,如果有精力再完善美化. 但是这篇还是要从HelloWorld开始学习. angular.js 文件加载我们选用 bootstrap中文网提供的一个cdn服 ...

  7. Kafka剖析:Kafka背景及架构介绍

    <Kafka剖析:Kafka背景及架构介绍> <Kafka设计解析:Kafka High Availability(上)> <Kafka设计解析:Kafka High A ...

  8. hdu4901The Romantic Hero

    #include<iostream> #include<map> #include<string> #include<cstring> #include ...

  9. 利用命令行引用外部jar包以使程序正常执行的4种方法

    声明:本博客为原创博客.未经同意.不得转载!原文链接为http://blog.csdn.net/bettarwang/article/details/30976069 平时写一些小的Java Demo ...

  10. Vmware-虚拟机中ubuntu不能联网问题的解决——NAT方式

    设置虚拟机不能联网是很痛苦的,这里我就ubuntu的NAT上网问题就个人经验讲一下,其他的桥连接等没有使用就没有经验了. 1.查看/设置下NAT的网络 打开VMware Workstation, 点击 ...