word2vec相关
word '\xe8\xb6\x85\xe8\x87\xaa\xe7\x84\xb6\xe7\x8e\xb0\xe8\xb1\xa1' not in vocabulary
分词后的样本格式:
英雄联盟,疾风剑豪-亚索,五杀,精彩操作
长安外传,街头采访,神回复
日本料理,蛋包饭
滑板运动,极限达人,城会玩
LineSentence
u'王者荣耀'
print(model[u'王者荣耀'])
print(model[u'超自然现象'])
python保存numpy数据
numpy.savetxt("result.txt", numpy_data)
python保存list数据
file=open('data.txt','w')
file.write(str(list_data))
file.close()
写list到txt文件
ipTable = ['158.59.194.213', '18.9.14.13', '58.59.14.21']
fileObject = open('sampleList.txt', 'w')
for ip in ipTable:
fileObject.write(ip)
fileObject.write('\n')
fileObject.close()
写dict对象到json文件将dict转为字符串后写入json文件
import json
dictObj = {
'andy':{
'age': 23,
'city': 'shanghai',
'skill': 'python'
},
'william': {
'age': 33,
'city': 'hangzhou',
'skill': 'js'
}
}
jsObj = json.dumps(dictObj)
fileObject = open('jsonFile.json', 'w')
fileObject.write(jsObj)
fileObject.close()
The first parameter passed to gensim.models.Word2Vec is an iterable of sentences.
Sentences themselves are a list of words.
gensim.models.word2vec.LineSentence
Simple format: one sentence = one line; words already preprocessed and separated by whitespace.
优质参考
http://wetest.qq.com/lab/view/30.html
http://lxbwk.njournal.sdu.edu.cn/fileup/HTML/2017-7-66.htm
http://jacoxu.com/%E7%A8%80%E7%96%8F%E7%9A%84%E7%9F%AD%E6%96%87%E6%9C%AC/
http://www.jianshu.com/p/d34d61188ab5
https://radimrehurek.com/gensim/models/doc2vec.html
https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
https://github.com/RaRe-Technologies/gensim/blob/b0f80a6ff3b4e58c55b6162b3b621af71225761a/docs/notebooks/doc2vec-IMDB.ipynb
https://stackoverflow.com/questions/31321209/doc2vec-how-to-get-document-vectors
>>> from gensim.models.doc2vec import TaggedDocument
可以
下面不可以
>>> import gensim.models.doc2vec.TaggedDocument
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named TaggedDocument
>>> from gensim.models.doc2vec import Doc2Vec,LabeledSentence
>>> import gensim.models.doc2vec.Doc2Vec
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named Doc2Vec
>>> from gensim.models.doc2vec import Doc2Vec
>>>
LabeledSentence的输入文件格式:每一行为:<labels, words>, 其中labels 可以有多个,用tab 键分隔,words 用空格键分隔,eg:<id category I like my cat demon>.
输出为词典vocabuary 中每个词的向量表示,这样就可以将商品labels:id,类别的向量拼接用作商品的向量表示。
参考http://www.360doc.com/content/17/0814/15/17572791_679139034.shtml
>>> from gensim.models.doc2vec import LabeledSentence
>>> documents = LabeledSentence(words=[u'some', u'words', u'here'], labels=[u'SENT_1'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: __new__() got an unexpected keyword argument 'labels'
>>> documents = LabeledSentence(words=[u'some', u'words', u'here'], tags=[u'SENT_1'])
>>> print(documents)
LabeledSentence([u'some', u'words', u'here'], [u'SENT_1'])
>>> from gensim.models.doc2vec import Doc2Vec
>>> model =Doc2Vec(documents, size = 100, window = 5, min_count = 1, workers=4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib64/python2.7/site-packages/gensim/models/doc2vec.py", line 641, in __init__
self.build_vocab(documents, trim_rule=trim_rule)
File "/usr/lib64/python2.7/site-packages/gensim/models/word2vec.py", line 577, in build_vocab
self.scan_vocab(sentences, progress_per=progress_per, trim_rule=trim_rule) # initial survey
File "/usr/lib64/python2.7/site-packages/gensim/models/doc2vec.py", line 680, in scan_vocab
if isinstance(document.words, string_types):
AttributeError: 'list' object has no attribute 'words'
Input to gensim.models.doc2vec should be an iterator over the LabeledSentence (say a list object). Try:
>>> model =Doc2Vec([documents], size = 100, window = 5, min_count = 1, workers=4)
>>> print model
Doc2Vec(dm/m,d100,n5,w5,s0.001,t4)
>>>
https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
>>> print(model.infer_vector([u'some',u'here']))
[ 3.02350195e-03 -2.47021206e-03 -4.23655838e-05 1.06619455e-05
-2.07307865e-03 1.52201334e-03 -2.68392172e-03 4.86029405e-03
-3.07570468e-03 -1.27961146e-04 3.59600926e-05 5.56750805e-04
-1.86618324e-03 -2.78112385e-03 -3.24939704e-03 -4.69824160e-03
-1.94230478e-03 3.41035030e-03 -1.96390250e-03 -3.12410085e-03
2.32424913e-03 4.13724314e-03 -3.76667455e-03 4.44490695e-03
4.86690132e-03 -1.01872580e-03 -4.15571406e-03 4.93804645e-03
2.08313856e-03 -2.49790330e-03 2.88306503e-03 -2.11228104e-03
-7.48132443e-05 -2.86692451e-03 1.31704379e-03 -3.49374721e-03
2.85517215e-03 1.55686424e-03 2.88037118e-03 2.10905354e-03
-8.35062645e-04 1.03656796e-03 3.66695994e-03 3.16017168e-03
3.91360372e-03 1.89097866e-03 -4.97946097e-03 -1.25238323e-03
-1.44126080e-03 3.26181017e-03 -6.02229848e-05 2.08685431e-03
4.63444972e-03 2.12231209e-03 2.76103779e-03 -4.06579726e-04
6.27412752e-04 3.08081333e-04 -3.25262197e-03 -4.00892925e-03
3.97314038e-03 4.02647816e-03 1.02536182e-03 2.09628342e-04
1.93663652e-03 -2.59007933e-03 2.82125012e-03 -4.11406020e-03
8.89573072e-04 -2.25311797e-03 -2.08429853e-03 1.73660505e-04
2.08250736e-03 1.53203832e-03 7.52889435e-04 -1.24395418e-03
-3.14715598e-03 -4.88714431e-04 -3.19321570e-03 -1.17522234e-03
3.58190737e-03 3.01620923e-03 -3.71830584e-03 -2.14487920e-03
3.48089077e-03 1.65970484e-03 3.03952186e-03 1.13033829e-03
2.58382503e-03 -4.09777975e-03 -8.57007224e-04 -2.81002838e-03
-1.20109224e-04 3.29560786e-03 4.00114199e-03 -1.00307877e-03
-3.04128020e-03 -3.20556248e-03 -3.60509683e-03 -3.22059076e-03]
word2vec相关的更多相关文章
- word2vec相关资源
word2vec官网:https://code.google.com/p/word2vec/ 利用中文数据跑Google开源项目word2vec:http://www.cnblogs.com/hebi ...
- word2vec——高效word特征提取
继上次分享了经典统计语言模型,最近公众号中有很多做NLP朋友问到了关于word2vec的相关内容, 本文就在这里整理一下做以分享. 本文分为 概括word2vec 相关工作 模型结构 Count-ba ...
- 用gensim学习word2vec
在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从 ...
- 文本分布式表示(三):用gensim训练word2vec词向量
今天参考网上的博客,用gensim训练了word2vec词向量.训练的语料是著名科幻小说<三体>,这部小说我一直没有看,所以这次拿来折腾一下. <三体>这本小说里有不少人名和一 ...
- 自然语言处理之word2vec
在word2vec出现之前,自然语言处理经常把字词转为one-hot编码类型的词向量,这种方式虽然非常简单易懂,但是数据稀疏性非常高,维度很多,很容易造成维度灾难,尤其是在深度学习中:其次这种词向量中 ...
- DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec
DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...
- word2vec中文类似词计算和聚类的使用说明及c语言源代码
word2vec相关基础知识.下载安装參考前文:word2vec词向量中文文本相似度计算 文件夹: word2vec使用说明及源代码介绍 1.下载地址 2.中文语料 3.參数介绍 4.计算相似词语 5 ...
- 深度解析Word2vec
Word2vec 本质上是一种降维操作--把词语从 one-hot encoder 形式的表示降维到 Word2vec 形式的表示,即Distributed Representation.也就是,通过 ...
- cbow与skip-gram
场景:上次回答word2vec相关的问题,回答的是先验概率和后验概率,没有回答到关键点. 词袋模型(Bag of Words, BOW)与词向量(Word Embedding)模型 词袋模型就是将句子 ...
随机推荐
- ubuntu 14.04 (desktop amd 64) 查看配置参数
硬盘型号 sudo hdparm -i /dev/sda |grep "Model" 硬盘数量大小 sudo fdisk -l |grep "Disk /dev/sd ...
- Java 集合-Collections工具类
2017-11-05 23:41:53 Collections类 Collections类:Collections类是针对集合进行操作的工具类,都是静态方法. 常用方法: public static ...
- Hystrix熔断机制原理剖析
一.前言 在分布式系统架构中多个系统之间通常是通过远程RPC调用进行通信,也就是 A 系统调用 B 系统服务,B 系统调用 C 系统的服务.当尾部应用 C 发生故障而系统 B 没有服务降级时候可能会导 ...
- IOS-工程师Mac上的必备软件
前言 iOS工程师一直都是那么的高逼格,用的是Mac电脑,耍的是iPhone手机,哇咔咔~~ 但是,作为一名iOS开发工程师,我们除了高逼格外,还必须是全能的.你不会点UI设计.不会点后台语 ...
- halcon之屌炸天的自标定(2)
自 halcon之屌炸天的自标定(1)发出以后,有朋友看了文章也应用到了自己的测量项目中,效果奇好,成功搞定了20um的需求,可喜可贺. 在halcon之屌炸天的自标定(1)中我提到了一片论文: ...
- ViewPager实现引导页(添加导航点,判断是否第一次进入主界面)
1.引导页的4个界面布局,里面加载一张背景图片 插入到guide的界面布局中(这里不用fragment) guide_background_fragment1.xml <?xml version ...
- facade外观模式
通过买股票与通过基金买股票引出外观模式: package com.disign.facade; /** * Created by zhen on 2017-05-18. */ public class ...
- EM算法及其应用: K-means 与 高斯混合模型
EM算法及其应用(一) EM算法及其应用(二): K-means 与 高斯混合模型 上一篇阐述了EM算法的主要原理,这一篇来看其两大应用 -- K-means 与 高斯混合模型,主要由EM算法的观点出 ...
- 微信小程序页面跳转的四种方法
wx.navigateTo({}) ,保留当前页面,跳转到应用内的某个页面,使用 wx.navigateBack 可以返回; 示例: 1 wx.navigateTo({ 2 url:'../test/ ...
- tf.cast()数据类型转换
tf.cast()函数的作用是执行 tensorflow 中张量数据类型转换,比如读入的图片如果是int8类型的,一般在要在训练前把图像的数据格式转换为float32. cast定义: cast(x, ...