并发编程实践三:Condition
Condition实例始终被绑定到一个锁(Lock)上。Lock替代了Java的synchronized方法,而Condition则替代了Object的监视器方法,包含wait、notify和notifyAll(想很多其它的了解能够看我的博客:Java并发编程3-等待、通知和中断)。而在Condition中相应为await、signal和signalAll。这篇文章主要讲述Condition的用法。以及它的实现机制。
Condition的使用
与Object的监视器方法不同。每一个Lock能够相应多个Condition对象,这样等待的线程就能够分散到多个等待集合中。就能够针对不同的等待集合来依次唤醒线程。实现唤醒效率的提高(不再须要唤醒全部线程)。看以下的样例:
public class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();
final Object[] items = new Object[100];
int putptr, takeptr, count;
public void put(Object x) throws InterruptedException {
lock.lock();
try {
while (count == items.length)
notFull.await();
items[putptr] = x;
if (++putptr == items.length)
putptr = 0;
++count;
notEmpty.signal(); //唤醒一个take线程
} finally {
lock.unlock();
}
}
public Object take() throws InterruptedException {
lock.lock();
try {
while (count == 0)
notEmpty.await();
Object x = items[takeptr];
if (++takeptr == items.length)
takeptr = 0;
--count;
notFull.signal(); //唤醒一个put线程
return x;
} finally {
lock.unlock();
}
}
}
以下我们来看看Condition的主要方法:
await
造成当前线程在接到信号或被中断之前一直处于等待状态。
与此Condition相关的锁以原子方式释放,而且出于线程调度的目的,将禁用当前线程,且在发生下面四种情况之中的一个曾经,当前线程将一直处于休眠状态:
1)其它某个线程调用此Condition的signal()方法,而且碰巧将当前线程选为被唤醒的线程。或者
2)其它某个线程调用此Condition的signalAll()方法。或者
3)其它某个线程中断当前线程,且支持中断线程的挂起;或者
4)已超过指定的等待时间。或者
5)发生“虚假唤醒”。
在全部情况下。在此方法返回到当前线程前。都必须又一次获取与此条件有关的锁。
await支持无參数版本号(一直等待)、带时间參数的版本号(仅仅等待指定时间或等待至某个时间)和支持不可中断的等待。
signal
唤醒一个等待线程。
假设全部的线程都在等待此条件。则选择当中的一个唤醒。在从 await 返回之前,该线程必须又一次获取锁。
signalAll
唤醒全部等待线程。
假设全部的线程都在等待此条件,则唤醒全部线程。在从 await 返回之前,每一个线程都必须又一次获取锁。
在使用Condition时,须要注意的是Condition的实例本身也是一个Object,也带有wait、notify和notifyAll方法,注意不要搞混。
Condition的实现
AbstractQueuedLongSynchronizer.ConditionObject是Condition的详细实现类,使用了一个FIFO队列来保存等待的线程,await将一个线程放入等待队列中,signal每次唤醒等待时间最长的线程(而notify则是随意唤醒一个线程)。signalAll则唤醒全部等待线程。等待队列的节点使用和AQS的队列同样的节点(见上一篇:“并发编程实践二:AbstractQueuedSynchronizer”),队列的head和tail的定义例如以下:
public class ConditionObject implements Condition, java.io.Serializable {
private transient Node firstWaiter;
private transient Node lastWaiter;
。。。
。。。
}
和AQS不同的是,ConditionObject使用nextWaiter指向下一个节点(AQS中使用prev和next),而且waitStatus属性值为Node.CONDITION。
当一个线程获取了锁后,它能够调用该锁相应的Condition的await方法将自己堵塞:
1)假设当前线程被中断,则抛出中断异常;
2)将当前线程放置到Condition的等待队列中;
3)释放当前线程的锁,而且保存锁定状态;
4)在收到信号、中断或超时前,一直堵塞;
5)使用保存的锁定状态又一次获取锁;
6)假设步骤4的堵塞过程中发生中断,则抛出中断异常。
public final void await() throws InterruptedException {
if (Thread.interrupted()) //1
throw new InterruptedException();
Node node = addConditionWaiter(); //2
int savedState = fullyRelease(node); //3
int interruptMode = 0;
while (!isOnSyncQueue(node)) { //4
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE) //5
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0) //6
reportInterruptAfterWait(interruptMode);
}
整个过程并不复杂,须要注意的是堵塞须要放在一个循环中。防止“虚假唤醒”,之所以要保存锁定状态,是为了使用排它模式来获取锁。
线程能够调用signal来将当前Condition的等待队列中的第一个节点移动到拥有锁的等待队列:
1)假设不是排它模式。则抛出IllegalMonitorStateException异常。
2)将等待队列的第一个节点出队列,并将其增加AQS的锁队列。
public final void signal() {
if (!isHeldExclusively()) //1
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first); //2
}
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
final boolean transferForSignal(Node node) {
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}
将因为signal总是从队列的第一个节点開始处理。因此总是能够保持唤醒的次序。
signal一開始就运行isHeldExclusively推断是否为排它模式,在ReentrantLock中的实现例如以下:
protected final boolean isHeldExclusively() {
return getExclusiveOwnerThread() == Thread.currentThread();
}
也就是当当前线程为锁的拥有者时。才继续运行。而在transferForSignal中,假设节点的waitStatus不是CONDITION,那么就仅仅会是CANCELLED(在await操作中运行fullyRelease时。假设失败会将节点的waitStatus设置到CANCELLED);enq将节点增加AQS的堵塞队列,返回节点的前续节点,当前续节点被取消(ws > 0),或者更改状态失败(这里同意失败,失败后被唤醒的线程在acquireQueued中会再次设置前续节点的状态,直到成功)后,将运行唤醒线程的操作。
线程也能够调用signalAll将全部线程从此Condition的等待队列移动到拥有锁的等待队列。
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
signalAll在doSignalAll中依次调用transferForSignal将Condition的等待队列中的全部节点移动到锁的等待队列中。
结束语
Condition在设计时就充分考虑了Object的监视器方法的缺陷。一个lock能够相应多个Condition,从而能够使线程分散到多个等待队列中,使应用更为灵活,而且在实现上使用了FIFO队列来保存等待线程,确保了能够做到使用signal按FIFO方式唤醒等待线程。避免每次唤醒全部线程导致数据竞争。
Condition这种设计相同也导致使用上要比Object的监视器方法更为复杂,你须要考虑使用多少个Condition。在什么地方使用哪个condition等等?因为Condition是和Lock配合使用的。所以是否使用Condition须要和Lock一起综合考虑。
并发编程实践三:Condition的更多相关文章
- 并发编程(三):从AQS到CountDownLatch与ReentrantLock
一.目录 1.AQS简要分析 2.谈CountDownLatch 3.谈ReentrantLock 4.谈消费者与生产者模式(notfiyAll/wait.si ...
- 并发编程(三):全视角解析volatile
一.目录 1.引入话题-发散思考 2.volatile深度解析 3.解决volatile原子性问题 4.volatile应用场景 二.引入话题-发散思考 public class T1 { /*vol ...
- java并发编程——通过ReentrantLock,Condition实现银行存取款
java.util.concurrent.locks包为锁和等待条件提供一个框架的接口和类,它不同于内置同步和监视器.该框架允许更灵活地使用锁和条件,但以更难用的语法为代价. Lock 接口 ...
- [Java并发编程(三)] Java volatile 关键字介绍
[Java并发编程(三)] Java volatile 关键字介绍 摘要 Java volatile 关键字是用来标记 Java 变量,并表示变量 "存储于主内存中" .更准确的说 ...
- Java并发编程(三)volatile域
相关文章 Java并发编程(一)线程定义.状态和属性 Java并发编程(二)同步 Android多线程(一)线程池 Android多线程(二)AsyncTask源代码分析 前言 有时仅仅为了读写一个或 ...
- Java并发编程实践
最近阅读了<Java并发编程实践>这本书,总结了一下几个相关的知识点. 线程安全 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些线程将如何交替执行,并且在主调代码中不需要任 ...
- [Java 并发] Java并发编程实践 思维导图 - 第一章 简单介绍
阅读<Java并发编程实践>一书后整理的思维导图.
- [Java 并发] Java并发编程实践 思维导图 - 第二章 线程安全性
依据<Java并发编程实践>一书整理的思维导图.
- 并发编程实践五:ReentrantLock
ReentrantLock是一个可重入的相互排斥锁,实现了接口Lock,和synchronized相比,它们提供了同样的功能.但ReentrantLock使用更灵活.功能更强大,也更复杂.这篇文章将为 ...
随机推荐
- c++一些语法模板
函数模板特 template <class T> int compare(T v1,T v2) { if(v1<v2) return -1; else if(v1>v2) re ...
- Linux好书、经典书籍推荐
Linux好书.经典书籍推荐 思想篇 <Linux/Unix设计思想> 图书将Unix与Linux的原理有效地结合起来,总结了Unix/Linux软件开发中的原则.在保留了第1版中Unix ...
- TSL230选型
tsl230是一种可以直接将光强转化成频率值的器件.详细原理就不介绍了,数据手冊里写的都非常清楚,230系列包括非常多种,主要为下面四类:TSL230,TSL230A,TSL230B系列:TSL230 ...
- thinkphp框架相关研究(一)
小编最近开始正式研究thinkphp框架,在此写下研究的整个历程,从最最基本的搭建网站开始,一步步记录.希望对大家有所帮助. 1.菜鸟从下载框架到建站 参考网址:http://blog.csdn.ne ...
- jsoup方法string转document
//Document doc2 = Jsoup.parseBodyFragment(element.text()); //String FieldName=doc ...
- poj 3280 Cheapest Palindrome ---(DP 回文串)
题目链接:http://poj.org/problem?id=3280 思路: dp[i][j] :=第i个字符到第j个字符之间形成回文串的最小费用. dp[i][j]=min(dp[i+1][j]+ ...
- Service组件 总结 + 绑定理Service三种实现方式 Messager + Binder + AIDL
在Android中进程按优先级可以分为五类,优先级从高到低排列: - 前台进程 该进程包含正在与用户进行交互的界面组件,比如一个Activity - 可视进程 该进程中的组件虽然没有和用户交互,但是仍 ...
- 蓝缘管理系统第二个版本号开源了。springMVC+springSecurity3.x+Mybaits3.x 系统
蓝缘管理系统第二个版本号开源了 继于 http://blog.csdn.net/mmm333zzz/article/details/16863543 版本号一.版本号二 对springMVC+spri ...
- mysql表修改
CREATE TABLE tab2 AS (SELECT * FROM tab1)这种做法表的存储引擎也会采用服务器默认的存储引擎而不是源表的存储引擎,此种复制方法把表的内容也一起复制过来了. CRE ...
- HibernateReview Day1 - Introduction
Hibernate已经学过去大概有半个月了,然后默默的忘掉了……所谓Practice makes perfect. 我尽力重新拾起来. 1.什么是ORM 在介绍Hibernate之前,我们先学习下OR ...