HDU5015 233 Matrix(矩阵高速幂)

题目链接

题目大意:

给出nm矩阵,给出第一行a01,
a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定第一列a10, a10, a10, a10,...an0.矩阵中的每一个元素等于左边的加上上面的,求出anm.

解题思路:

先要依据矩阵元素的特征得出相乘的矩阵T, 然后就是求这个矩阵T的m次幂(这里就能够用矩阵高速幂),最后再和给定的第一列所形成的矩阵相乘,就能得到anm。

求矩阵T请參考

代码:

#include <cstdio>
#include <cstring> typedef long long ll; const int N = 15;
const ll MOD = 10000007; ll A[N][N];
int B[N];
int n;
ll m; struct Rec { ll v[N][N]; Rec () { memset (v, 0, sizeof (v));}
void init () { for (int i = 0; i < n + 2; i++)
for (int j = 0; j < n + 2; j++)
v[i][j] = A[i][j];
} Rec operator * (const Rec &a) { Rec tmp;
for (int i = 0; i < n + 2; i++)
for (int j = 0; j < n + 2; j++)
for (int k = 0; k < n + 2; k++)
tmp.v[i][j] = (tmp.v[i][j] + (v[i][k] * a.v[k][j]) % MOD) % MOD;
return tmp;
} Rec operator *= (const Rec &a) { return *this = *this * a;
}
}num; void init () { memset (A, 0, sizeof (A));
for (int i = 0; i < n + 1; i++) {
A[i][0] = 10LL;
A[i][n + 1] = 1LL;
} A[n + 1][n + 1] = 1LL;
for (int i = 1; i < n + 1; i++)
for (int j = 1; j <= i; j++)
A[i][j] = 1LL;
B[0] = 23;
} Rec f(ll m) { if (m == 1)
return num;
Rec tmp;
tmp = f(m / 2);
tmp *= tmp;
if (m % 2)
tmp *= num;
return tmp;
} int main () { while (scanf ("%d%lld", &n, &m) != EOF) { for (int i = 1; i <= n; i++)
scanf ("%d", &B[i]); init();
B[n + 1] = 3;
num.init (); num = f(m); /* for (int i = 0; i <= n + 1; i++) {
for (int j = 0; j <= n + 1; j++)
printf ("%lld ", num.v[i][j]);
printf ("\n");
}*/ ll ans = 0;
for (int i = 0; i <= n + 1; i++)
ans = (ans + (num.v[n][i] * B[i]) % MOD) % MOD;
printf ("%lld\n", ans);
}
return 0;
}

HDU5015 233 Matrix(矩阵高速幂)的更多相关文章

  1. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  2. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  3. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  4. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  6. HDU 4965 Fast Matrix Calculation(矩阵高速幂)

    HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...

  7. [HDU5015]233 Matrix

    [HDU5015]233 Matrix 试题描述 In our daily life we often use 233 to express our feelings. Actually, we ma ...

  8. hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)

    http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...

  9. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

随机推荐

  1. 大数据时代的精准数据挖掘——使用R语言

    老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一 ...

  2. TCP/IP笔记 二.网络层(2)——ICMP,RIP,OSPF,BGP

    1. ICMP ICMP (Internet Control Message Protocol) 作用:提高 IP 数据报交付成功的机会. 1.1 特点 ICMP 允许主机或路由器报告差错情况和提供有 ...

  3. 使用ServletFileUpload实现上传

    1.首先我们应该为上传的文件建一个存放的位置,一般位置分为暂时和真是目录,那我们就须要获取这俩个目录的绝对路径,在servlet中我们能够这样做 ServletContext application ...

  4. HTML5 实现拖拽

    如图 可以从第一个方框拖拽花色到第二个方框中. 也可以再拖动回来. 具体代码实现 index.html <!DOCTYPE HTML> <html> <head> ...

  5. Swift - 数字格式化转成字符串(保留两位小数)

    1,下面是一个浮点类型的数字转成String字符串的例子 1 2 var f = 123.32342342 var s:String = "\(f)" //123.32342342 ...

  6. javascript 判断微信浏览器

    原文:javascript 判断微信浏览器 用js判断当前环境是否是是微信内置浏览器有两个方法: 1.判断useragent 2.判断是否支持微信内置浏览器才支持的一些方法,比如WeixinJSBri ...

  7. SQLite中如何用api操作BLOB类型的字段

    在实际的编程开发当中我们经常要处理一些大容量二进制数据的存储,如图片或者音乐等等.对于这些二进制数据(blob字段)我们不能像处理普通的文本那样简单的插入或者查询,为此SQLite提供了一组函数来处理 ...

  8. 论javascript模块化的优缺

    如今backbone.emberjs.spinejs.batmanjs 等MVC框架侵袭而来.CommonJS.AMD.NodeJS.RequireJS.SeaJS.curljs等模块化的JavaSc ...

  9. [Android]Volley源代码分析(店)应用

    通过前面的谈话,我相信你有Volley有了一定的了解了原理.本章将给出一些我们的应用程序都可以在样品中直接使用,第一样品是 NetworkImageView类,事实上NetworkImageView顾 ...

  10. oracle 密码文件文件

    密码文件作用: 密码文件用于dba用户的登录认证. dba用户:具备sysdba和sysoper权限的用户,即oracle的sys和system用户. 本地登录: 1)操作系统认证: [oracle@ ...