As long as Binbin loves Sangsang
- 题意:
给定一个无向图,每一个边有两个属性。长度和一个字母‘L',’O',‘V’。‘E'中的一个。从1点開始到达n点,每次必须依照L -> O -> V -> E -> ... -> E的顺序。到达终点时候必须经过E边 - 分析:
对于这样的对边的限制,比較简单的方法是将一个点拆成若干个点。由于经过’L'到达点p的状态和经过‘O'到达点p的状态时不一样的,第一个之后仅仅能经过’O'边。而第二个仅仅能经过‘V'边,所以经过不同的边到达同一个点的时候相应的状态应该分开。也就是将点拆分成四个点。分别表示经过四种边到达p点。 - 注意:
图能够有自环。也能够仅仅有一个点
路径必须至少有一个LOVE
路径长度尽可能小,长度若相等,那么LOVE的数量尽可能多
const LL INF = 1e18;
const int MAXV = 10000; struct Edge
{
LL from, to, dist;
}; struct HeapNode
{
LL d, u, num;
bool operator < (const HeapNode& rhs) const
{
return d > rhs.d;
}
}; struct Dijkstra
{
int n; //n:点数 m:暂时变量
vector<Edge> edges; //存储全部的边
vector<int> G[MAXV];//每一个点的全部相邻边序号
bool done[MAXV]; // 是否已永久标号
LL d[MAXV]; // s起点到各个点的距离
LL num[MAXV]; void init(int n)
{
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist)
{
G[from].push_back(edges.size());
edges.push_back((Edge) { from, to, dist });
} void dijkstra(int s)
{
priority_queue<HeapNode> Q;
for(int i = 0; i < n; i++) d[i] = INF;
CLR(num, 0);
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode) { 0, s, 0 });
while(!Q.empty())
{
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if(done[u]) continue;
done[u] = true;
for(int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if (d[e.to] == d[u] + e.dist)
num[e.to] = max(num[e.to], num[x.u] + 1);
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
num[e.to] = num[x.u] + 1;
Q.push((HeapNode) { d[e.to], e.to, num[e.to] });
}
}
}
}
} dij; LL chk[4]; int main()
{
int T;
RI(T);
FE(kase, 1, T)
{
REP(i, 4) chk[i] = INF;
int n, m, u, v, d, op;
char type;
RII(n, m);
dij.init(n << 2);
REP(i, m)
{
scanf("%d%d%d %c", &u, &v, &d, &type);
u--; v--;
if (type == 'L') op = 0;
else if (type == 'O') op = 1;
else if (type == 'V') op = 2;
else op = 3;
chk[op] = min(chk[op], (LL)d);
dij.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
dij.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
}
printf("Case %d: ", kase);
if (n == 1)
{
REP(i, 4)
if (chk[i] == INF)
{
puts("Binbin you disappoint Sangsang again, damn it!");
goto end;
}
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, chk[0] + chk[1] + chk[2] + chk[3], 1);
end:;
}
else
{
dij.dijkstra(3 * n);
if (dij.d[4 * n - 1] == INF)
puts("Binbin you disappoint Sangsang again, damn it!");
else
{
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %I64d LOVE strings at last.\n"
, dij.d[4 * n - 1], dij.num[4 * n - 1] / 4);
}
}
}
return 0;
}
const LL INF = 1e18;
const int MAXV = 10000; struct Edge
{
int from, to, dist;
}; struct SPFA
{
int n;
LL d[MAXV];
int num[MAXV];
vector<Edge> edges;
vector<int> G[MAXV];
bool inq[MAXV];
void init(int n)
{
this->n = n;
edges.clear();
REP(i, n)
G[i].clear();
}
void AddEdge(int from, int to, int dist)
{
G[from].push_back(edges.size());
edges.push_back((Edge) {from, to, dist});
}
void spfa(int s)
{
queue<int> q;
CLR(inq, false);
CLR(num, 0);
REP(i, n) d[i] = INF;
d[s] = 0;
q.push(s); inq[s] = true;
while (!q.empty())
{
int u = q.front();
q.pop(); inq[u] = false;
REP(i, G[u].size())
{
Edge& e = edges[G[u][i]];
if (d[e.to] == d[u] + e.dist && num[u] + 1 > num[e.to])
{
num[e.to] = num[u] + 1;
if (!inq[e.to])
{
q.push(e.to);
inq[e.to] = true;
}
}
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
num[e.to] = num[u] + 1;
if (!inq[e.to])
{
q.push(e.to);
inq[e.to] = true;
}
}
}
}
}
} spfa; LL chk[4]; int main()
{
int T;
RI(T);
FE(kase, 1, T)
{
REP(i, 4) chk[i] = INF;
int n, m, u, v, d, op;
char type;
RII(n, m);
spfa.init(n << 2);
REP(i, m)
{
scanf("%d%d%d %c", &u, &v, &d, &type);
u--; v--;
if (type == 'L') op = 0;
else if (type == 'O') op = 1;
else if (type == 'V') op = 2;
else op = 3;
chk[op] = min(chk[op], (LL)d);
spfa.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
spfa.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
}
printf("Case %d: ", kase);
if (n == 1)
{
REP(i, 4)
if (chk[i] == INF)
{
puts("Binbin you disappoint Sangsang again, damn it!");
goto end;
}
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, chk[0] + chk[1] + chk[2] + chk[3], 1);
end:;
}
else
{
spfa.spfa(3 * n);
if (spfa.d[4 * n - 1] == INF)
puts("Binbin you disappoint Sangsang again, damn it!");
else
{
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, spfa.d[4 * n - 1], spfa.num[4 * n - 1] / 4);
}
}
}
return 0;
}
顺便弄一些自己的測试数据。方便查错。
4 4
1 2 1 L
2 1 1 O
1 3 1 V
3 4 1 E
ans:4, 1
4 4
1 2 1 L
2 3 1 O
3 4 1 V
4 1 1 E
ans:no
12 12
1 5 10 L
5 6 10 O
6 7 10 V
7 12 10 E
1 2 1 L
2 3 1 O
3 4 1 V
4 8 1 E
8 9 1 L
9 10 1 O
10 11 1 V
11 12 33 E
ans:40, 2
12 12
1 5 10 L
5 6 10 O
6 7 10 V
7 12 10 E
1 2 1 L
2 3 1 O
3 4 1 V
4 8 1 E
8 9 1 L
9 10 1 O
10 11 1 V
11 12 34 E
ans:40, 1
1 4
1 1 1 L
1 1 1 O
1 1 1 V
1 1 1 E
ans:4, 1
2 8
1 1 2 L
1 1 1 O
1 1 1 V
1 1 1 E
1 2 3 L
2 1 1 O
1 2 1 V
2 1 1 E
ans:5, 1
1 3
1 1 1 L
1 1 1 O
1 1 1 E
ans:no
11 11
1 2 1 L
2 3 1 O
3 4 348 V
4 11 1000 E
1 5 50 L
5 6 50 O
6 7 50 V
7 8 50 E
8 9 50 L
9 10 50 O
10 4 50 V
ans:1350 2
As long as Binbin loves Sangsang的更多相关文章
- HDU 4360 As long as Binbin loves Sangsang spfa
题意: 给定n个点m条边的无向图 每次必须沿着LOVE走,到终点时必须是完整的LOVE,且至少走出一个LOVE, 问这样情况下最短路是多少,在一样短情况下最多的LOVE个数是多少. 有自环. #inc ...
- 2012 Multi-University #7
最短路+拆点 A As long as Binbin loves Sangsang 题意:从1走到n,每次都是LOVE,问到n时路径是连续多个"LOVE"的最短距离.秀恩爱不想吐槽. 分析:在普通的最 ...
- 【转】最短路&差分约束题集
转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...
- 8-12-COMPETITION
链接:最短路 A.HDU 2544 最短路 算是最基础的题目了吧.............我采用的是Dijkstra算法....... 代码: #include <iostream> ...
- 2012 Multi-University Training Contest 7
2012 Multi-University Training Contest 7 A.As long as Binbin loves Sangsang B.Dead or alive C.Dragon ...
- 转载 - 最短路&差分约束题集
出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★ ...
- Microsoft Loves Linux
微软新任CEO纳德拉提出的“Microsoft Loves Linux”,并且微软宣布.NET框架的开源,近期Microsoft不但宣布了Linux平台的SQL Server,还宣布了Microsof ...
- 5806 NanoApe Loves Sequence Ⅱ(尺取法)
传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/131072 K ...
- 5805 NanoApe Loves Sequence(想法题)
传送门 NanoApe Loves Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/131072 K ( ...
随机推荐
- QNX---Interrupt vector numbers(原创!!!)
Interrupt intr Description 0 A clock that runs at the resolution set by ClockPeriod() 1 Keyboard 2 S ...
- Servlet过滤器——仿盗链过滤器
1.概述 介绍如何使用过滤器技术,防止通过其他URL地址直接访问本站资源.运行本实例,当URL地址不是本站地址时,在网页中将显示错误提示信息. 2.技术要点 主要应用request对象的getHead ...
- 纯win32实现PNG图片透明窗体
#include <windows.h> #include <gdiplus.h> /* GDI+ startup token */ ULONG_PTR gdiplusSta ...
- 用c#实现单链表(程序代码已经验证,完全正确)
1.程序的大致结构如下图: 2.下面依次列出各个类的代码 ①ILISTDs.cs 这是一个接口类,列出单链表的方法 using System; using System.Collections.Ge ...
- hdu 5138
参考……!!!! #include <iostream> #include <cstdio> #include <cmath> #include <cstri ...
- NET Core RC2 and .NET Core SDK Preview
NET Core RC2 and .NET Core SDK Preview 先看一下 .NET Core(包含 ASP.NET Core)的路线图: Beta6: 2015年7月27日 Beta7: ...
- 学习VC MFC开发必须了解的常用宏和指令
1.#include指令 包含指定的文件 2.#define指令 预定义,通常用它来定义常量(包括无参量与带参量),以及用来实现那些“表面似和善.背后一长串”的宏,它本身并不在编译过程中进行,而 ...
- Android菜鸟的成长笔记(14)—— Android中的状态保存探究(上)
原文:[置顶] Android菜鸟的成长笔记(14)—— Android中的状态保存探究(上) 我们在用手机的时候可能会发现,即使应用被放到后台再返回到前台数据依然保留(比如说我们正在玩游戏,突然电话 ...
- JDWP
JPDA(Java Platform Debugger Architecture) 是 Java 平台调试体系结构的缩写,通过 JPDA 提供的 API,开发人员可以方便灵活的搭建 Java 调试应用 ...
- Open Source RTOS
http://www.osrtos.com/ Name License Platforms Description Last updated FreeRTOS Modified GPL MSP ...