bellman_ford寻找平均权值最小的回路
给定一个有向图,如果存在平均值最小的回路,输出平均值。
使用二分法求解,对于一个猜测值mid,判断是否存在平均值小于mid的回路
如果存在平均值小于mid的包含k条边的回路,那么有w1+w2+w3+...+wk < k * mid,即(w1-mid)+(w2-mid)+..(wk-mid)<0,
即判断是否存在负权回路即可。
#include <stdio.h>
#include <string.h>
const int N = +;
const int INF = <<;
struct Edge
{
int u,v;
double weight;
}g[];
double dist[N];
void relax(int u, int v,double weight)
{
if(dist[v] > dist[u] + weight)
dist[v] = dist[u] + weight;
}
bool bellman_ford(int n, int m)
{
int i,j;
for(i=; i<n-; ++i)//n-1循环
for(j=; j<m; ++j)//枚举所有的边去松弛最短路径
{
relax(g[j].u,g[j].v,g[j].weight);
}
bool flag = false;
for(i=; i<m; ++i)
if(dist[g[i].v] > dist[g[i].u] + g[i].weight)
{
flag = true;
break;
}
return flag;
}
bool test(double x,int n, int m)
{
int i;
for(i=; i<m; ++i)
g[i].weight -= x;
bool ret = bellman_ford(n,m);
for(i=; i<m; ++i)
g[i].weight += x;
return ret;
}
int main()
{
int n,m,i,t,tCase=;
double l,r;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=; i<=n; ++i)
dist[i] = INF;
l = r = ;
for(i=; i<m; ++i)
{
scanf("%d%d%lf",&g[i].u,&g[i].v,&g[i].weight);
r = r > g[i].weight ? r : g[i].weight;
}
if(!test(r+,n,m))printf("Case #%d: No cycle found.\n",tCase++);
else
{
double mid; while(r-l>0.001)//因为题目要求保留2位小数,所以当r-l>0.001时,l就是答案。
{
double mid = (r + l ) / ;
if(test(mid,n,m))
r = mid;
else
l = mid;
}
printf("Case #%d: %.2lf\n",tCase++,l);
} }
return ;
}
bellman_ford寻找平均权值最小的回路的更多相关文章
- UVA 11090 Going in Cycle!! 环平均权值(bellman-ford,spfa,二分)
题意: 给定一个n个点m条边的带权有向图,求平均权值最小的回路的平均权值? 思路: 首先,图中得有环的存在才有解,其次再解决这个最小平均权值为多少.一般这种就是二分猜平均权值了,因为环在哪也难以找出来 ...
- The Minimum Cycle Mean in a Digraph 《有向图中的最小平均权值回路》 Karp
文件链接 Karp在1977年的论文,讲述了一种\(O(nm)\)的算法,用来求有向强连通图中最小平均权值回路(具体问题请参照这里) 本人翻译(有删改): 首先任取一个节点 \(s\) ,定义 \(F ...
- hdu Caocao's Bridges(无向图边双连通分量,找出权值最小的桥)
/* 题意:给出一个无向图,去掉一条权值最小边,使这个无向图不再连同! tm太坑了... 1,如果这个无向图开始就是一个非连通图,直接输出0 2,重边(两个节点存在多条边, 权值不一样) 3,如果找到 ...
- UVA 548.Tree-fgets()函数读入字符串+二叉树(中序+后序遍历还原二叉树)+DFS or BFS(二叉树路径最小值并且相同路径值叶子节点权值最小)
Tree UVA - 548 题意就是多次读入两个序列,第一个是中序遍历的,第二个是后序遍历的.还原二叉树,然后从根节点走到叶子节点,找路径权值和最小的,如果有相同权值的就找叶子节点权值最小的. 最后 ...
- HDU 1533 KM算法(权值最小的最佳匹配)
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- leadcode的Hot100系列--64. 最小路径和--权值最小的动态规划
如果这个: leadcode的Hot100系列--62. 不同路径--简单的动态规划 看懂的话,那这题基本上是一样的, 不同点在于: 1.这里每条路径相当于多了一个权值 2.结论不再固定,而是要比较不 ...
- hdu-4738.Caocao's Bridges(图中权值最小的桥)
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)
http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...
- hdu 1565&hdu 1569(网络流--最小点权值覆盖)
方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- php可获取客户端信息
<?php echo "<br>".$_SERVER['PHP_SELF'];#当前正在执行脚本的文件名,与 document root相关 echo " ...
- KVM 实现机制
1.1. KVM简介 KVM是一个基于Linux内核的虚拟机,它属于完全虚拟化范畴,从Linux-2.6.20开始被包含在Linux内核中.KVM基于x86硬件虚拟化技术,它的运行要求Intel ...
- C++中的常对象和常对象成员
常对象 常对象必须在定义对象时就指定对象为常对象. 常对象中的数据成员为常变量且必须要有初始值,如 Time const t1(12,34,36); //定义t1为常对象 这样的话,在所有的场合中,对 ...
- objective-c 中数据类型之中的一个 几何数据类型(CGPoint,CGSize,CGRect)
// CGPoint 结构体数据原型, 用于声明一个点: /* Points. */ struct CGPoint { CGFloat x; CGFloat y; }; typedef struct ...
- 编写自己的单点登录(SSO)服务
王昱 yuwang881@gmail.com 博客地址http://yuwang881.blog.sohu.com 摘要:单点登录(SSO)的技术被越来越广泛地运用到各个领域的软件系统其中.本文从 ...
- javascript中使用Map
mis.comm.js.Map = function() { this.elements = new Array(); //获取MAP元素个数 this.size = function() { ret ...
- 程序猿的量化交易之路(29)--Cointrader之Tick实体(16)
转载需注明出处:http://blog.csdn.net/minimicall,http://cloudtrade.top Tick:什么是Tick,在交易平台中很常见,事实上就 单笔交易时某仅仅证券 ...
- Eclipse插件引入jar包的方法
搞了两天,终于找到解决办法了.原来 Eclipse 插件项目引入外面的jar包不能用 build path---->add external jars的方法. 先说明两个概念:类加载器,O ...
- 分布式发布订阅消息系统Kafka
高吞吐量的分布式发布订阅消息系统Kafka--安装及测试 一.Kafka概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动作(网页浏览, ...
- phpc.sinaapp.com 加密的解密方法
原文:phpc.sinaapp.com 加密的解密方法 很简单,用类似phpjm的解密方式,替换掉_inc.php中最后一个return中的eval为print就出来了.