UVA 11090 - Going in Cycle!!

option=com_onlinejudge&Itemid=8&page=show_problem&category=550&problem=2031&mosmsg=Submission+received+with+ID+14135547" target="_blank" style="">题目链接

题意:给定一个有向图,球平均权值最小的回路

思路:二分+判负环。每次二分一个值mid。推断是否存在小于mid的环,那么就是(w1 + w2 + w3...) / n < mid == w1 - mid + w2 - mid + w3 - mid .... < 0,所以每次二分的时候。把边权值减掉mid。之后bellmanford判负环就可以

代码:

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std; typedef double Type; const int MAXNODE = 55; struct Edge {
int u, v;
Type dist;
Edge() {}
Edge(int u, int v, Type dist) {
this->u = u;
this->v = v;
this->dist = dist;
}
}; struct BellmanFrod {
int n, m;
vector<Edge> edges;
vector<int> g[MAXNODE];
bool inq[MAXNODE];
Type d[MAXNODE];
int p[MAXNODE];
int cnt[MAXNODE]; void init(int n) {
this->n = n;
for (int i = 0; i < n; i++) g[i].clear();
edges.clear();
} void add_Edge(int u, int v, Type dist) {
edges.push_back(Edge(u, v, dist));
m = edges.size();
g[u].push_back(m - 1);
} bool negativeCycle() {
queue<int> Q;
memset(inq, 0, sizeof(inq));
memset(cnt, 0, sizeof(cnt));
for (int i = 0; i < n; i++) {
d[i] = 0; inq[i] = true; Q.push(i);
} while (!Q.empty()) {
int u = Q.front();
Q.pop();
inq[u] = false;
for (int i = 0; i < g[u].size(); i++) {
Edge& e = edges[g[u][i]];
if (d[e.v] > d[u] + e.dist) {
d[e.v] = d[u] + e.dist;
p[e.v] = g[u][i];
if (!inq[e.v]) {
Q.push(e.v);
inq[e.v] = true;
if (++cnt[e.v] > n) return true;
}
}
}
}
return false;
}
} gao; int T, n, m; bool judge(double mid) {
for (int i = 0; i < gao.m; i++)
gao.edges[i].dist -= mid;
bool tmp = gao.negativeCycle();
for (int i = 0; i < gao.m; i++)
gao.edges[i].dist += mid;
return tmp;
} int main() {
scanf("%d", &T);
int cas = 0;
while (T--) {
scanf("%d%d", &n, &m);
gao.init(n);
int u, v;
double dist;
double Max = 0;
while (m--) {
scanf("%d%d%lf", &u, &v, &dist);
u--; v--;
Max = max(Max, dist);
gao.add_Edge(u, v, dist);
}
printf("Case #%d: ", ++cas);
if (!judge(Max + 1)) printf("No cycle found.\n");
else {
double l = 0, r = Max;
for (int i = 0; i < 100; i++) {
double mid = (l + r) / 2;
if (!judge(mid)) l = mid;
else r = mid;
}
printf("%.2lf\n", l);
}
}
return 0;
}

UVA 11090 - Going in Cycle!!(Bellman-Ford)的更多相关文章

  1. UVA - 11090 - Going in Cycle!!(二分+差分约束系统)

    Problem  UVA - 11090 - Going in Cycle!! Time Limit: 3000 mSec Problem Description You are given a we ...

  2. UVA 11090 Going in Cycle!!(二分答案+判负环)

    在加权有向图中求平均权值最小的回路. 一上手没有思路,看到“回路”,第一想法就是找连通分量,可又是加权图,没什么好思路,那就转换题意:由求回路权值->判负环,求最小值->常用二分答案. 二 ...

  3. UVa 12299 RMQ with Shifts(移位RMQ)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...

  4. 1122 Hamiltonian Cycle (25 分)

    1122 Hamiltonian Cycle (25 分) The "Hamilton cycle problem" is to find a simple cycle that ...

  5. UVA - 590Always on the run(递推)

    题目:UVA - 590Always on the run(递推) 题目大意:有一个小偷如今在计划着逃跑的路线,可是又想省机票费. 他刚開始在城市1,必须K天都在这N个城市里跑来跑去.最后一天达到城市 ...

  6. UVA 11090 Going in Cycle!!

    要求给定的图的中平均权值最小的环,注意处理自环的情况就能过了. 按照w1+w2+w3+….wn < n*ave的不等式,也就是(w1-ave) + (w2-ave) +…..(wn-ave) & ...

  7. 小结OC中Retain cycle(循环引用)

    retain cycle 的产生 说到retain cycle,首先要提一下Objective-C的内存管理机制. 作为C语言的超集,Objective-C延续了C语言中手动管理内存的方式,但是区别于 ...

  8. PAT A1122 Hamiltonian Cycle (25 分)——图遍历

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...

  9. UVa 1220 - Party at Hali-Bula(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

随机推荐

  1. sql: oracle, for update和for update nowait的区别

    1. oracle for update和for update nowait的区别 http://www.cnblogs.com/quanweiru/archive/2012/11/09/276222 ...

  2. chrome你这是入侵OSX了么?

    今天突然发现安装chrome的应用后,会在Dock中出现如下图标,点击即可启动chrome相关应用,很是方便.

  3. 11586 - Train Tracks

    Problem J: Train Tracks Andy loves his set of wooden trains and railroad tracks. Each day, Daddy has ...

  4. 基于visual Studio2013解决面试题之0504单链表逆序

     题目

  5. Java面试宝典2014版

    一. Java基础部分......................................................................................... ...

  6. ASP.NET之Application、Session和Cookie的差别

    在Asp.net中Application.Session和Cookie都能够保存信息,那么它们有什么不同呢? 一.首先Application是在server端建立一个状态变量,存储于server的全局 ...

  7. perl 贪婪匹配小例子

    redis01:/root# cat x2.pl my $str="a19823a456123"; if ($str =~/a(.*)23/){print "1----& ...

  8. boost.asio包装类st_asio_wrapper开发教程(2014.5.23更新)(一)-----转

    一:什么是st_asio_wrapper它是一个c/s网络编程框架,基于对boost.asio的包装(最低在boost-1.49.0上调试过),目的是快速的构建一个c/s系统: 二:st_asio_w ...

  9. Qt4创建工程的几种方法:linux系统

    方法一:以Qt Creator 作为IDE 1.启动Qt Creator,并创建一个空项目 2.输入路径和工程名字 3.添加cpp文件 4.添加代码,并且编译执行 5.执行结果 方法二:利用linux ...

  10. HDU1584:蜘蛛牌(DFS)

    Problem Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么 ...