hdu1824(two-sat)
传送门:Let's go home
题意:有n个队伍要回家,但是每队必须留下一人,而且m个限制,a留下,b必须回家,问能否在限制条件下每队留下一人。
分析:将每个队的队长和两个队员当成i和i';然后对于每个限制a,b,连边a->b'和b->a';建好图后tarjan缩点判断每个强连通内是否存在矛盾[i,i']即可。
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 2010
#define FILL(a,b) (memset(a,b,sizeof(a)))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
struct edge
{
int v,next;
edge() {}
edge(int v,int next):v(v),next(next) {}
} e[N*N/];
int n,m,scc,step,top,tot;
int head[N],dfn[N],low[N],belong[N],Stack[N];
bool instack[N];
void init()
{
tot=;step=;
scc=;top=;
FILL(head,-);
FILL(dfn,);
FILL(low,);
FILL(instack,false);
}
void addedge(int u,int v)
{
e[tot]=edge(v,head[u]);
head[u]=tot++;
}
void tarjan(int u)
{
int v;
dfn[u]=low[u]=++step;
Stack[top++]=u;
instack[u]=true;
for(int i=head[u]; ~i; i=e[i].next)
{
v=e[i].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u])
{
scc++;
do
{
v=Stack[--top];
instack[v]=false;
belong[v]=scc;
}
while(v!=u);
}
} void solve()
{
for(int i=; i<*n; i++)
if(!dfn[i])tarjan(i);
bool flag=true;
for(int i=; i<n; i++)
{
if(belong[i<<]==belong[i<<^])
{
flag=false;
break;
}
}
if(flag)puts("yes");
else puts("no");
}
map<int,int>mp;
int main()
{
int a,b,c,u,v;
while(scanf("%d%d",&n,&m)>)
{
init();mp.clear();
for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
mp[a]=*i;mp[b]=*i+;mp[c]=*i+;
}
for(int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
addedge(mp[u],mp[v]^);
addedge(mp[v],mp[u]^);
}
solve();
}
}
hdu1824(two-sat)的更多相关文章
- 多边形碰撞 -- SAT方法
检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- 2—sat
模型的解决方法看论文<利用对称性解决2-SAT问题> HDU1814 :难度1.5 HDU1824: 难度 2 HDU1815: 难度3 HDU1816: 对于每两个人,二选一HDU181 ...
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- 学习笔记(two sat)
关于two sat算法 两篇很好的论文由对称性解2-SAT问题(伍昱), 赵爽 2-sat解法浅析(pdf). 一些题目的题解 poj 3207 poj 3678 poj 3683 poj 3648 ...
- LA 3211 飞机调度(2—SAT)
https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...
- HIT 1917 2—SAT
题目大意:一国有n个党派,每个党派在议会中都有2个代表, 现要组建和平委员会,要从每个党派在议会的代表中选出1人,一共n人组成和平委员会. 已知有一些代表之间存在仇恨,也就是说他们不能同时被选为和平委 ...
- 2 - sat 模板(自用)
2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一 POJ 3207 Ikki's Story IV ...
- SAT考试里最难的数学题? · 三只猫的温暖
问题 今天无意中在Quora上看到有人贴出来一道号称是SAT里最难的一道数学题,一下子勾起了我的兴趣.于是拿起笔来写写画画,花了差不多十五分钟搞定.觉得有点意思,决定把解题过程记下来.原帖的图太小,我 ...
- 世界碰撞算法原理和总结(sat gjk)
序言 此文出于作者的想法,从各处文章和论文中,总结和设计项目中碰撞结构处理方法.如有其它见解,可以跟作者商讨.(杨子剑,zijian_yang@yeah.net). 在一个世界中,有多个物体,物体可以 ...
随机推荐
- 配置rhel 6.4(64位)安装使用syslog-ng 3.5
我基本的博客地址是:www.cppblog.com/zdhsoft 相应的CentOS 6.x也就可能使用. 下载地址: 第一步:安装 wget http://www.balabit.com/down ...
- HTML5 Canvas自定义圆角矩形与虚线(Rounded Rectangle and Dash Line)
HTML5 Canvas自定义圆角矩形与虚线(RoundedRectangle and Dash Line) 实现向HTML Canvas 2d context绘制对象中添加自定义的函数功能演示,如何 ...
- 【linux】内核编译
原创,转载时请注明,谢谢.邮箱:tangzhongp@163.com 博客园地址:http://www.cnblogs.com/embedded-tzp Csdn博客地址:http://blog.cs ...
- Qt 中文乱码解决大全
源地址:http://blog.csdn.net/xcy2011sky/article/details/7168376 解决中文乱码,最好知道乱码是什么格式比如说:utf-8. 解决方案: 1.让整个 ...
- Winfrom 表格单元格格式化事件(DataGridView - CellFormatting)
格式化 14,15列将编码显示为编码值 this.dgv_prescription.CellFormatting += (object sen, DataGridViewCellFormattingE ...
- 关于在打包Jar文件时遇到的资源路径问题(二)
在关于<关于在打包Jar文件时遇到的资源路径问题(一)>中,以及描述了当资源与可执行JAr分离时的资源路径代码的编写问题,后来想了想,为什么将<Java核心技术卷一>中的程序1 ...
- Android 环境变量配置(Mac)
Mac 系统10.10,自带的就是jdk1.6,因为工作需要就升级到了1.7,要从新配置环境变量了 mac 默认是自带的有jdk1.6 安装路径为: /System/Library/Framework ...
- Appium Server 传递iOS参数
Appium server iOS Capabilities 参数 iOS Only Capability Description Values calendarFormat (Sim-only) ...
- 【ASP.NET Web API教程】2.3.3 创建Admin控制器
原文:[ASP.NET Web API教程]2.3.3 创建Admin控制器 注:本文是[ASP.NET Web API系列教程]的一部分,如果您是第一次看本博客文章,请先看前面的内容. Part 3 ...
- HDU 1556 Color the Ball 线段树 题解
本题使用线段树自然能够,由于区间的问题. 这里比較难想的就是: 1 最后更新须要查询全部叶子节点的值,故此须要使用O(nlgn)时间效率更新全部点. 2 截取区间不能有半点差错.否则答案错误. 这两点 ...