题意:。。

析:dp[i] 表示把 i 个盘子搬到第 3 个柱子上最少步数,那么产生先把 i-1 个盘子搬到 第3个上,再把第 i 个搬到 第 2 个上,然后再把 i-1 个盘子,

从第3个柱子搬到第1个上,再把第 i 个盘子,搬到第3个上,再把第i-1个盘子从第1个柱子上搬到第3个上,所以总起来就是。

dp[i] = dp[i-1] * 3 + 2.

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#define debug() puts("++++");
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 40 + 5;
const int mod = 2000;
const int dr[] = {-1, 1, 0, 0};
const int dc[] = {0, 0, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL dp[maxn]; void init(){
dp[1] = 2;
for(int i = 2; i < 36; ++i) dp[i] = dp[i-1] * 3LL + 2LL;
} int main(){
init();
while(cin >> n) cout << dp[n] << endl;
return 0;
}

HDU 2064 汉诺塔III (递推)的更多相关文章

  1. HDU 2064 汉诺塔III

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  2. HDU——2064汉诺塔III

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. HDU 2064 汉诺塔III (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2064 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到 ...

  4. 汉诺塔III 递推题

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  5. HDU 2064 汉诺塔III(递归)

    题目链接 Problem Description 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘 ...

  6. HDU 2077 汉诺塔IV (递推)

    题意:... 析:由于能最后一个是特殊的,所以前n-1个都是不变的,只是减少了最后一个盘子的次数,所以根据上一个题的结论 答案就是dp[n-1] + 2. 上一题链接:http://www.cnblo ...

  7. HDOJ.2064 汉诺塔III

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. [acm]HDOJ 2064 汉诺塔III

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=2064 汉诺塔变种,只能从中间专业,递归关系为:f(n)=3*f(n-1)+2. //汉诺塔变种,只能 ...

  9. 汉诺塔VII(递推,模拟)

    汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

随机推荐

  1. 如何通过SQL注入获取服务器本地文件

    写在前面的话 SQL注入可以称得上是最臭名昭著的安全漏洞了,而SQL注入漏洞也已经给整个网络世界造成了巨大的破坏.针对SQL漏洞,研究人员也已经开发出了多种不同的利用技术来实施攻击,包括非法访问存储在 ...

  2. 翻翻git之---&quot;有趣效果&quot;的自己定义View EasyArcLoading

    转载请注明出处:王亟亟的大牛之路 早上写了一个关于MD的文章,下午给编译器调了个色,感觉要上天了.所以为了试颜色就出了这篇文章,让大家一起瞎一下 好了废话不说.这一片给大家介绍一个当做Dialog作用 ...

  3. zoj How Many Shortest Path

    How Many Shortest Path 题目: 给出一张图,求解最短路有几条.处理特别BT.还有就是要特别处理map[i][i] = 0,数据有不等于0的情况! 竟然脑残到了些错floyd! ! ...

  4. php操作xml的方法

    xml源文件 <?xml version="1.0 encoding="UTF-8"?> <humans> <zhangying> & ...

  5. Mmseg中文分词算法解析

    Mmseg中文分词算法解析 @author linjiexing 开发中文搜索和中文词库语义自己主动识别的时候,我採用都是基于mmseg中文分词算法开发的Jcseg开源project.使用场景涉及搜索 ...

  6. 这样看ACM是不是更好?

    如果搞ACM只是为了拿奖,为了保研,这样太功利,整个过程都会变得没意思.我说过我同时看中过程和结果. 其实ACM解题也不是那么没意思,每次AC都有一种非常棒的成就感,每个题目就像是一个解谜游戏,完成了 ...

  7. UBUntu 软件 源配置方法

        近期公司产品须要添加一个功能,就是版本号自己主动更新.使用apt-get 实现. apt-get 软件源配置的方法,參见本人资源里的共享.以下是代码中作为升级的一部分.  FILE *fp; ...

  8. AIX下RAC搭建 Oracle10G(二)主机配置

    AIX下RAC搭建系列 AIX下RAC搭建 Oracle10G(二)主机配置 环境 节点 节点1 节点2 小机型号 IBM P-series 630 IBM P-series 630 主机名 AIX2 ...

  9. webpack打包报错Unexpected token

    最近项目要上线,需要对项目进行打包部署到服务器上面,在打包过程中npm run build后出现以下报错Unexpected token: punc (() [./~/_element-ui@1.4. ...

  10. linux 文件记录锁详解

    一: linux记录锁更恰当的称呼应该是范围锁,它是对文件某个范围的锁定. 关于记录锁的功能就是fcntl提供的第五个功能,具体使用如下: int fcntl(int fd, int cmd, str ...