SPOJ FIBOSUM && FIBOSUM2
Fibonacci数列定义为
$$f_n = f_{n-1}+f_{n-2}, \text{以及初值}f_0=0, f_1=1.$$
本文之讨论,皆在模$10^9+7$意义下。
给定$0 \le x \le y \le 10^9$,求$\sum_{i=x}^y f_i$。
解:
令$s_n = \sum_{i=1}^n f_i$,则
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} s_{n-1} \\ f_n \\ f_{n-1} \end{bmatrix} = \begin{bmatrix} s_n \\ f_{n+1} \\ f_n \end{bmatrix}$$
于是$\sum_{i=x}^y f_i = s_y - s_{x-1}$,可用矩阵快速幂$O(\log x + \log y)$解决。
给定$0 \le c < k \le 2^{15}$,以及$0 < n \le 10^{18}$,求
$$\sum_{i=1}^n f_{ki+c}.$$
解:
令
$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
则
$$M \begin{bmatrix} f_n \\ f_{n-1} \end{bmatrix} = \begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix}$$
$$M^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$$
于是$(M^n)_{01} = f_n$,
$$\left( \sum_{i=x}^y M^i \right)_{01} = \sum_{i=x}^y f_i$$
进而
$$ \left( \sum_{i=1}^n M^{ki+c} \right)_{01} = \sum_{i=1}^n f_{ki+c}$$
借此我们令
$$A = \begin{bmatrix} I & M^k \\ 0 & M^k \end{bmatrix}$$
可以验证
$$A^n \begin{bmatrix} 0 \\ M^c \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n M^{ki+c} \\ M^{kn+c} \end{bmatrix}$$
可以利用矩阵快速幂在$O(4^3 \log n)$求得。
这样复杂度太高,我们继续优化。
设$f(\lambda) = \det (\lambda I - A)$是矩阵$A$的特征多项式,即
$$f(\lambda) = \lambda^4 - a_1 \lambda^3 - a_2 \lambda^2 - a_3 \lambda - a_4. $$
其中$a_1 = f_{k+1}+f_{k-1}+2, a_2 = -(f_{k+1}f_{k-1}-f_k^2+2(f_{k+1}+f_{k-1})+1), a_3 = 2(f_{k+1}f_{k-1}-f_kf_k)+f_{k+1}+f_{k-1}, a_4 = f_k^2-f_{k+1}f_{k-1}.$
由Hamilton-Cayley定理,$f(A) = 0$,即
$$A^4 = a_1 A^3 + a_2 A^2 + a_3 A + a_4 I.$$
于是我们可以利用多项式乘法,把$A^n$化为$A$的三次多项式。
假设$A^n = c_3 A^3 + c_2 A^2 + c_1 A^1 + c_4$,并令$s_n = \sum_{i=1}^n f_{ki+c}$,有
$$s_n = \sum_{i=0}^3 c_is_i = c_1s_1+c_2s_2+c_3s_3$$
时间复杂度$O(4^2 \log n)$。
我们仍可继续优化,考虑到Fibonacci数列在模$10^9+7$下的循环节是$2 \times 10^9+16$,并且
$$\sum_{i=1}^{2 \times 10^9+16} f_{ki+c} \equiv \sum_{i=1}^{2 \times 10^9+16} f_{i} \equiv 0 \pmod {10^9+7}.$$
于是
$$s_n \equiv s_{n \bmod (2 \times 10^9+16)}.$$
则可以把$n$限制到 int 范围内。
P.S. 可构造3阶矩阵。令
$$ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & f_{k+1} & f_k \\ 0 & f_k & f_{k-1} \end{bmatrix}. $$
有
$$ A^n \begin{bmatrix} 0 \\ f_{k+c} \\ f_{k+c-1} \end{bmatrix} = \begin{bmatrix} s_n \\ f_{k(n+1)+c} \\ f_{k(n+1)+c-1} \end{bmatrix}. $$
其特征函数$f(\lambda) = \lambda^3 - a_1 \lambda^2 - a_2 \lambda - a_3$,其中 $a_1 = f_{k+1}+f_{k-1}+1, a_2 = f_k^2-f_{k+1}f_{k-1}-f_{k+1}-f_{k-1}, a_3 = f_{k+1}f_{k-1}-f_k^2$。时间复杂度$O(3^2 \log n)$。
SPOJ FIBOSUM && FIBOSUM2的更多相关文章
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- SPOJ DQUERY D-query(主席树)
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- 【填坑向】spoj COT/bzoj2588 Count on a tree
这题是学主席树的时候就想写的,,, 但是当时没写(懒) 现在来填坑 = =日常调半天lca(考虑以后背板) 主席树还是蛮好写的,但是代码出现重复,不太好,导致调试的时候心里没底(虽然事实证明主席树部分 ...
- SPOJ bsubstr
题目大意:给你一个长度为n的字符串,求出所有不同长度的字符串出现的最大次数. n<=250000 如:abaaa 输出: 4 2 1 1 1 spoj上的时限卡的太严,必须使用O(N)的算法那才 ...
- 【SPOJ 7258】Lexicographical Substring Search
http://www.spoj.com/problems/SUBLEX/ 好难啊. 建出后缀自动机,然后在后缀自动机的每个状态上记录通过这个状态能走到的不同子串的数量.该状态能走到的所有状态的f值的和 ...
- 【SPOJ 1812】Longest Common Substring II
http://www.spoj.com/problems/LCS2/ 这道题想了好久. 做法是对第一个串建后缀自动机,然后用后面的串去匹配它,并在走过的状态上记录走到这个状态时的最长距离.每匹配完一个 ...
- 【SPOJ 8222】Substrings
http://www.spoj.com/problems/NSUBSTR/ clj课件里的例题 用结构体+指针写完模板后发现要访问所有的节点,改成数组会更方便些..于是改成了数组... 这道题重点是求 ...
- SPOJ GSS2 Can you answer these queries II
Time Limit: 1000MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description Being a ...
随机推荐
- java文本文件加密解密类
原文:http://www.open-open.com/code/view/1420031154765 import java.awt.*; import java.awt.event.*; impo ...
- github/gitlab ssh-keys全局唯一
我们知道,通过在gitlab.github上设置ssh-key,可以直接拉取代码:git clone …… 公司为了代码安全,会对代码访问权限进行控制,不同人有不同代码的访问权限. 有时候,为了临时获 ...
- cocos2d-x 3.0 final 移植 android
准备工作 你仅仅要依照上一篇的 cocos2d-x 3.0 final 环境搭建 完毕就能够了 1.编辑proj.android\jni\Android.mk,更改内容例如以下 LOCAL_PATH ...
- SolidEdge如何绘制变化半径倒圆角
1 在要变化半径的边上打一些点 2 点击倒角命令的参数对话框,选择可变半径 3 选择倒角的直线,右击确认,再依次点击关键点,修改倒角数值,修改之后按回车,继续下一个点,直到结束.
- electron 开发拆坑总结
electron 总结 前言 有一个web项目需要用客户端来包装一下 项目的主要业务都在服务器上 所以项目的大多数功能都用url 地址来访问: 客户端登陆界面在本地 打包客户端的本地登陆界面 做为登陆 ...
- 二:redis 的hash类型相关操作
=====================二种:hash类型================== 介绍:redis -> hash是一个string类型的field和value的映射表 hash ...
- MVC5中Model层开发数据注解 EF Code First Migrations数据库迁移 C# 常用对象的的修饰符 C# 静态构造函数 MSSQL2005数据库自动备份问题(到同一个局域网上的另一台电脑上) MVC 的HTTP请求
MVC5中Model层开发数据注解 ASP.NET MVC5中Model层开发,使用的数据注解有三个作用: 数据映射(把Model层的类用EntityFramework映射成对应的表) 数据验证( ...
- HDU 5371 Hotaru's problem(Manacher算法+贪心)
manacher算法详见 http://blog.csdn.net/u014664226/article/details/47428293 题意:给一个序列,让求其最大子序列,这个子序列由三段组成, ...
- 【bzoj4653】[Noi2016]区间
离散化+线段树 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstri ...
- NameNode备份策略以及恢复方法
一.dits和fsimage 首先要提到两个文件edits和fsimage,下面来说说他们是做什么的. 集群中的名称节点(NameNode)会把文件系统的变化以追加保存到日志文件edits中 ...