外排序 & 败者树 & 多路归并-学习
来来来,根据这篇文章,学一下败者树吧:
http://blog.csdn.net/whz_zb/article/details/7425152
一、胜者树
胜者树的一个优点是,如果一个选手的值改变了,可以很容易地修改这棵胜者树。只需要沿着从该结点到根结点的路径修改这棵二叉树,而不必改变其他比赛的结果。

二、败者树
败者树是胜者树的一种变体。在败者树中,用父结点记录其左右子结点进行比赛的败者,而让胜者参加下一轮的比赛。败者树的根结点记录的是败者,需要加一个结点来记录整个比赛的胜利者。采用败者树可以简化重构的过程。

败者树 多路平衡归并外部排序
一 外部排序的基本思路
假设有一个72KB的文件,其中存储了18K个整数,磁盘中物理块的大小为4KB,将文件分成18组,每组刚好4KB。
首先通过18次内部排序,把18组数据排好序,得到初始的18个归并段R1~R18,每个归并段有1024个整数。
然后对这18个归并段使用4路平衡归并排序。
第1次归并:产生5个归并段
R11 R12 R13 R14 R15
其中
R11是由{R1,R2,R3,R4}中的数据合并而来
R12是由{R5,R6,R7,R8}中的数据合并而来
R13是由{R9,R10,R11,R12}中的数据合并而来
R14是由{R13,R14,R15,R16}中的数据合并而来
R15是由{R17,R18}中的数据合并而来
把这5个归并段的数据写入5个文件。 类推,下略。
二 使用败者树加快合并排序
外部排序最耗时间的操作时磁盘读写,对于有m个初始归并段,k路平衡的归并排序,磁盘读写次数为
|logkm|,可见增大k的值可以减少磁盘读写的次数,但增大k的值也会带来负面效应,即进行k路合并
的时候会增加算法复杂度。
如果使用败者树,可以在O(logk)的复杂度下得到最小的数,算法复杂度将为O((n-1)*logk), 对于外部排序这种数据量超大的排序来说,这是一个不小的提高。
外排序 & 败者树 & 多路归并-学习的更多相关文章
- k路归并(败者树,记录败者)
败者树在外排序中用到,每加入一个数字时,调整树需要o(lgk),比较快.外排序过程主要分为两个阶段:(1)初始化各归并段写入硬盘,初识化的方法,可利用内排序方法还可以一种叫置换选择排序的方 ...
- 算法-排序(1)k路平衡归并与败者树
const int MaxValue=; //根据实际情况选择最大值 void kwaymerge(Element *r,int k){ int i,q; r=new Element[k]; //在败 ...
- UVA 11997 K Smallest Sums (多路归并)
从包含k个整数的k个数组中各选一个求和,在所有的和中选最小的k个值. 思路是多路归并,对于两个长度为k的有序表按一定顺序选两个数字组成和,(B表已经有序)会形成n个有序表 A1+B1<=A1+B ...
- K-th Number 线段树(归并树)+二分查找
K-th Number 题意:给定一个包含n个不同数的数列a1, a2, ..., an 和m个三元组表示的查询.对于每个查询(i, j, k), 输出ai, ai+1, ... ,aj的升序排列中第 ...
- uva 11997 K Smallest Sums 优先队列处理多路归并问题
题意:K个数组每组K个值,每次从一组中选一个,共K^k种,问前K个小的. 思路:优先队列处理多路归并,每个状态含有K个元素.详见刘汝佳算法指南. #include<iostream> #i ...
- AlphaGo原理-蒙特卡罗树搜索+深度学习
蒙特卡罗树搜索+深度学习 -- AlphaGo原版论文阅读笔记 目录(?)[+] 原版论文是<Mastering the game of Go with deep neural ne ...
- 珂朵莉树(Chtholly Tree)学习笔记
珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...
- bzoj4165 矩阵 堆维护多路归并
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4165 题解 大概多路归并是最很重要的知识点了吧,近几年考察也挺多的(虽然都是作为签到题的). ...
- POJ1018贪心(多路归并的想法)
题意: 有n个服务器,每个服务器都要安装网线(必须也只能安装一个),然后每个服务器都有mi种选择网线的方式,每种方式两个参数,一个是速度b,另一个是价钱p,然后让你找到一个最大的比值 min ...
随机推荐
- Python基础3 函数 变量 递归 -DAY3
本节内容 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数 温故知新 1. 集合 主要作用: 去重 关系测 ...
- centos7下LVM挂载和扩容
说明:此操作在centos7下进行,如果是centos6发行版,需要注意格式化LV的文件系统类型(centos7.0开始默认文件系统是xfs,centos6是ext4).最后一步写入系统的类型,其中文 ...
- Spring-02 Java配置实现IOC
Java配置 Spring4推荐使用java配置实现IOC Spring boot也推荐采用java配置实现IOC 在实际项目中,一般采用注解配置业务bean,全局配置使用Java配置. Java配置 ...
- JavaSE-27 JDBC
学习要点 JDBC 查询数据 添加数据 修改数据 删除数据 JDBC 1 JDBC的定义 JDBC是Java数据库连接技术的简称,提供连接和操作各种常用数据库的能力. 2 JDBC工作原理 3 ...
- 数据库课程设计 PHP web实现
纪念一下自己写的东西.. 都说很垃圾就是了 直接用XAMPP做的 菜鸟网上学的PHP和HTML <!DOCTYPE html> <html> <head> < ...
- android滚动图片
关于广告轮播,大家肯定不会陌生,它在现手机市场各大APP出现的频率极高,它的优点在于"不占屏",可以仅用小小的固定空位来展示几个甚至几十个广告条,而且动态效果很好,具有很好的用户& ...
- C指针类型转换问题
先看下面的代码: #include<stdio.h> int main () { int a; char *x; x = (char *) &a; a = 512; x[0] = ...
- 洛谷——P1640 [SCOI2010]连续攻击游戏
P1640 [SCOI2010]连续攻击游戏 题目描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备 ...
- More Effective C++ - 章节一 : 基础议题
1. 仔细区分 pointers 和 references references和pointers的差别描述如下: pointer:当需要考虑"不指向任何对象"时,或者是考虑&qu ...
- 10. InnoDB表空间加密
10. InnoDB表空间加密 InnoDB支持存储在单独表空间中的表的数据加密 .此功能为物理表空间数据文件提供静态加密. 详细信息见官方文档