百度百科↓

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

DP例题 数字三角形

不放题目了就

转移方程:

DP[i][j]=Max(DP[i-][j],DP[i-][j-])+a[i][j]

ans=Max(DP[n][..n])
#include <bits/stdc++.h>
#define Max(a,b) a>b?a:b
using namespace std;
typedef long long LL;
inline LL read() { LL x=; int f=; char ch=getchar();
while(!isdigit(ch)) { if (ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) x=(x<<)+(x<<)+(ch^),ch=getchar(); return x*f;
}
int n;
const int N=<<;
LL a[N][N];
LL DP[N][N];
signed main(){
n=read();
for(register int i=;i<=n;i++)
for(register int j=;j<=i;j++) a[i][j]=read();
for(register int i=;i<=n;i++)
for(register int j=;j<=i;j++) DP[i][j]=a[i][j],DP[i][j]+=Max(DP[i-][j],DP[i-][j-]);
LL ans=-;
for(register int i=;i<=n;i++) ans=Max(ans,DP[n][i]);
cout << ans << endl ;
return ;
}

其他的题目见我的博客

动态规划DP入门的更多相关文章

  1. 【专章】dp入门

    动态规划(简称dp),可以说是各种程序设计中遇到的第一个坎吧,这篇博文是我对dp的一点点理解,希望可以帮助更多人dp入门. ***实践是检验真理的唯一标准,看再多文章不如自己动手做几道!!!*** 先 ...

  2. 【学习笔记】dp入门

    知识点 动态规划(简称dp),可以说是各种程序设计中遇到的第一个坎吧,这篇博文是我对dp的一点点理解,希望可以帮助更多人dp入门.   先看看这段话 动态规划(dynamic programming) ...

  3. 【DP入门到入土】

    DP例题较多,可以根据自己需求食用~ update:下翻有状压DP入门讲解,也只有讲解了(逃~ DP的实质,就是状态的枚举. 一般用DP解决的问题,都是求计数或最优问题,所以这类问题,我们也可以用搜索 ...

  4. poj 3254 状压dp入门题

    1.poj 3254  Corn Fields    状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...

  5. xbz分组题B 吉利数字 数位dp入门

    B吉利数字时限:1s [题目描述]算卦大湿biboyouyun最近得出一个神奇的结论,如果一个数字,它的各个数位相加能够被10整除,则称它为吉利数.现在叫你计算某个区间内有多少个吉利数字. [输入]第 ...

  6. 【dp入门题】【跟着14练dp吧...囧】

    A HDU_2048 数塔 dp入门题——数塔问题:求路径的最大和: 状态方程: dp[i][j] = max(dp[i+1][j], dp[i+1][j+1])+a[i][j];dp[n][j] = ...

  7. 数位dp入门 hdu2089 不要62

    数位dp入门 hdu2089 不要62 题意: 给定一个区间[n,m] (0< n ≤ m<1000000),找出不含4和'62'的数的个数 (ps:开始以为直接暴力可以..貌似可以,但是 ...

  8. POJ 2342 树形DP入门题

    有一个大学的庆典晚会,想邀请一些在大学任职的人来參加,每一个人有自己的搞笑值,可是如今遇到一个问题就是假设两个人之间有直接的上下级关系,那么他们中仅仅能有一个来參加,求请来一部分人之后,搞笑值的最大是 ...

  9. hdu3555 Bomb 数位DP入门

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555 简单的数位DP入门题目 思路和hdu2089基本一样 直接贴代码了,代码里有详细的注释 代码: ...

随机推荐

  1. linux strings-在对象文件或二进制文件中查找可打印的字符串

    推荐:更多Linux 文件查找和比较 命令关注:linux命令大全 strings命令在对象文件或二进制文件中查找可打印的字符串.字符串是4个或更多可打印字符的任意序列,以换行符或空字符结束. str ...

  2. 3. Python中的分支判断、循环

    本文利用的是Python 3.x版本,建议学习3.x版本 Python中的分支判断.循环 1. 分支条件判断 1.1 比较操作 以下是数之间常见的比较操作,例如5>3就是数学意义上的比较,5是大 ...

  3. ZJU cluster

    * loginSSH using MobaXterm: >> ssh kaiming@10.106.239.105

  4. MySQL Connector/Python 接口 (一)

    这里仅介绍 MySQL 官方开发的 Python 接口,参见这里: https://dev.mysql.com/doc/connector-python/en/ Chapter 1 Introduct ...

  5. 【Codeforces 1019A】Elections

    [链接] 我是链接,点我呀:) [题意] 每个人都有自己喜欢的队员 但是如果贿赂他们可以让他们更改自己喜欢的队员 问你最少要花多少钱贿赂队员才能让1号队员严格有最多的人喜欢? [题解] 除了1号之外, ...

  6. Leetcode 51.N后问题

    N后问题 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. ...

  7. WINDOWS下调用GetTokenInformation的奇怪之处--两次调用

    就是用getLastErr可以得到错误号,同时,会将需要的长度写到参数里,再进行第二次调用,以此来节约内存空间. 神奇的长见识了. 相关说法如下: ====================== The ...

  8. org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project.MavenProject, org.apach

    https://www.cnblogs.com/wxymg/p/8630471.html

  9. Portal嵌入SAPUI5应用程序

    Embedding SAPUI5 Applications You can embed SAPUI5 applications directly into the SAP Fiori launchpa ...

  10. MyBatis3教程

    MyBatis3教程: http://www.yihaomen.com/article/java/302.htm http://www.mybatis.org/mybatis-3/zh/index.h ...