看到\( 10^10 \)的范围首先想到二分,然后把问题转化为判断\( [1,n] \)内有多少个是某个质数的平方和的数。

所以应该是加上是一个质数的平方的个数减去是两个质数的平方的个数加上是三个质数的平方的个数……注意到这正好是莫比乌斯函数反过来,所以 \( re-=mb[i]*n/(i*i) \) 即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=300005;
int p[N],tot,mu[N];
long long n,mb[N],ans;
bool v[N];
long long wk(long long n)
{
long long re=0ll;
for(long long i=2;i*i<=n;i++)
re-=mb[i]*n/(i*i);//cout<<re<<endl;
return re;
}
int main()
{
mb[1]=1;
for(int i=2;i<=N-5;i++)
{
if(!v[i])
{
p[++tot]=i;
mb[i]=-1;
}
for(int j=1;j<=tot&&i*p[j]<=N-5;j++)
{
int k=i*p[j];
v[k]=1;
if(i%p[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
scanf("%lld",&n);
long long l=0ll,r=30000000000ll;
while(l<=r)
{
long long mid=(l+r)>>1ll;
if(wk(mid)<n)
l=mid+1;
else
ans=mid,r=mid-1;
}
printf("%lld",ans);
return 0;
}

bzoj 2986: Non-Squarefree Numbers【容斥+莫比乌斯函数】的更多相关文章

  1. BZOJ2440(容斥+莫比乌斯函数)

    题目本质: 首先有如下结论: 而通过写一写可以发现: 举例来讲,36及其倍数的数,会被1的倍数加一遍,被4的倍数扣一遍,会被9的倍数扣一遍,而为了最终计数为0,需要再加回来一遍,所以在容斥里面是正号. ...

  2. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

  3. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  4. [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】

    题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...

  5. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  6. BZOJ.4558.[JLOI2016]方(计数 容斥)

    BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...

  7. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  8. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  9. bzoj 2669 [cqoi2012]局部极小值 DP+容斥

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 838  Solved: 444[Submit][Status ...

随机推荐

  1. 123. Best Time to Buy and Sell Stock III ~~

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. 携程Apollo(阿波罗)配置中心Spring Boot迁移日志组件,使用配置中心进行管理的思路

    说明: 1.Spring Boot项目默认使用logback进行日志管理 2.logback在启动时默认会自动检查是否有logback.xml文件,如果有时会有限加载这个文件. 3.那么如果是用配置中 ...

  3. CSS布局之BFC和IFC

    本文为原创,转载请注明出处: cnzt       文章:cnzt-p http://www.cnblogs.com/zt-blog/p/6708358.html <这是一篇css2-3的布局规 ...

  4. Linux下进程信息的深入分析

    这里我们主要介绍进程的状态,进程的状态可以通过/proc/PID/status来查看,也可以通过/proc/PID/stat来查看. 如果说到工具大家用的最多的ps也可以看到进程的信息.这里我们通过/ ...

  5. POST &amp; GET &amp; Ajax 全解

    GET&POST&Ajax 全解 一.POST和GET的差别 GET:GET方法提交数据不安全,数据置于请求行.客户段地址栏可见:GET方法提交的数据限制大小在255个字符之内.參数直 ...

  6. Hibernate也须要呵护——Hibernate的泛型DAO

    众所周之.面向对象的基础是抽象.也能够说,抽象促使编程在不断发展. 对于数据库的訪问,以前写过HqlHelper.EFHelper.编写Spring+Hibernate框架下的应用.也相同离不了编写一 ...

  7. 【剑指offer】数组中仅仅出现一次的数字(1)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/27649027 题目描写叙述: 一个整型数组里除了两个数字之外.其它的数字都出现了两次. 请 ...

  8. 初探swift语言的学习笔记十一(performSelector)

    作者:fengsh998 原文地址:http://blog.csdn.net/fengsh998/article/details/35842441 转载请注明出处 假设认为文章对你有所帮助,请通过留言 ...

  9. POST 请求静态文件 响应405

    使用post方式请求js.html这样的静态文件一般的web服务器都会返回405 Method Not Allowed. 我测试用的web服务器用的是IIS(windows10+IIS10),理论上来 ...

  10. WEB服务器安装oracle jdbc

    WEB服务器,如果想采用jdbc访问另一台Oracle数据库服务器,那么它应该先安装Oracle客户端,或者要安装oracle jdbc. 那么怎样安装oracle jdbc呢? 1.到oracle下 ...