bzoj 2986: Non-Squarefree Numbers【容斥+莫比乌斯函数】
看到\( 10^10 \)的范围首先想到二分,然后把问题转化为判断\( [1,n] \)内有多少个是某个质数的平方和的数。
所以应该是加上是一个质数的平方的个数减去是两个质数的平方的个数加上是三个质数的平方的个数……注意到这正好是莫比乌斯函数反过来,所以 \( re-=mb[i]*n/(i*i) \) 即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=300005;
int p[N],tot,mu[N];
long long n,mb[N],ans;
bool v[N];
long long wk(long long n)
{
long long re=0ll;
for(long long i=2;i*i<=n;i++)
re-=mb[i]*n/(i*i);//cout<<re<<endl;
return re;
}
int main()
{
mb[1]=1;
for(int i=2;i<=N-5;i++)
{
if(!v[i])
{
p[++tot]=i;
mb[i]=-1;
}
for(int j=1;j<=tot&&i*p[j]<=N-5;j++)
{
int k=i*p[j];
v[k]=1;
if(i%p[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
scanf("%lld",&n);
long long l=0ll,r=30000000000ll;
while(l<=r)
{
long long mid=(l+r)>>1ll;
if(wk(mid)<n)
l=mid+1;
else
ans=mid,r=mid-1;
}
printf("%lld",ans);
return 0;
}
bzoj 2986: Non-Squarefree Numbers【容斥+莫比乌斯函数】的更多相关文章
- BZOJ2440(容斥+莫比乌斯函数)
题目本质: 首先有如下结论: 而通过写一写可以发现: 举例来讲,36及其倍数的数,会被1的倍数加一遍,被4的倍数扣一遍,会被9的倍数扣一遍,而为了最终计数为0,需要再加回来一遍,所以在容斥里面是正号. ...
- 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...
- BZoj 2301 Problem b(容斥定理+莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 7732 Solved: 3750 [Submi ...
- [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】
题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- BZOJ.4558.[JLOI2016]方(计数 容斥)
BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
随机推荐
- WKWebView的了解
1. http://blog.csdn.net/chenyong05314/article/details/53735215 2. http://www.jianshu.com/p/6ba250744 ...
- windows下的asp.net core开发及docker下的发布
参照下面,搭建好开发环境.Docker及配置好Docker加速器 http://www.cnblogs.com/windchen/p/6257846.html 参照下面,将windows共享目录挂载到 ...
- poj——3118 Arbiter
Arbiter 题目描述: “仲裁者”是<星际争霸>科幻系列中的一种太空船.仲裁者级太空船是神族的战船,专门提供精神力支援.不像其他战船的人员主要是战士阶级,仲裁者所承载的都 ...
- vm 安装CentOS7
1.首先需要到CentOS官网下载CentOS7的iso镜像文件,地址http://mirrors.cn99.com/centos/7/isos/x86_64/ 这里我选择的是迅雷种子文件 2.下载完 ...
- JavaOne Online Hands-on Labs
http://www.oracle.com/technetwork/java/index-156938.html
- easyshell 安装
EasyShell是一个可以直接在Eclipse IDE中打开shell窗口的工具,在shell中运行选中的文件,打资源管理. 百度经验:jingyan.baidu.com 工具/原料 Easy_Sh ...
- Android时时监測手机的旋转角度 依据旋转角度确定在什么角度载入竖屏布局 在什么时候载入横屏布局
一.场景描写叙述: 最近开发中遇到个问题,就是我们在做横竖屏切换的功能时.横竖屏布局是操作系统去感知的,作为开发员没法确定Activity在什么时候载入横屏布局,在什么时候载入竖屏布局.因此为了找到载 ...
- Visual Studio VS如何重置所有设置
工具-导入和导出设置-重置所有设置,点击下一步即可.
- android-调用系统的ContentPrivder获取单张图片实现剪切做头像及源代码下载
首先讲述这个小项目的特色: 1.调用系统的相冊应用获取单张图片 2.对单张图片进行剪切方便做成指定大小的头像图片 3.对获取图片的结果进行解析,使用三种方式进行. 首先看看效果图: 打开app,进入注 ...
- bzoj3109【CQOI2013】新数独
3109: [cqoi2013]新数独 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 365 Solved: 229 [Submit][Statu ...