kernel memory code learn
mem alloc
page
Noticeble:
1. there are two kind of page: virtual page, physical page.
2. the page struct is abstract of physical memory page, but not virtual memory!
struct page {
unsigned long flags; //page's status,eg: is dirty page or not?
atomic_t _count; //the page referred count
atomic_t _mapcount;
...
void *virtual; //virtual field means the physical page's virltual address.
}
related function:
1. __count should be controled by page_count(), if page_count() return 0, means the page is not used!
zone
Normally, there are zone like: ZONE_DMA, ZONE_NORMAL, ZONE_HIGHMMEM, ZONE_DMA32
x86_64 only 2 zone: ZONE_NORMAL, ZONE_DMA
struct zone {
unsigned long watermark[NR_WMARK];
...
const char *name; // This feild controled by alloc_pages in mm/page_alloc.c
}
alloc page related functions
alloc pages
struct page * alloc_pages(gfp_t gfp_mask, unsigned int order);
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
struct page * alloc_page(gfp_t gfp_mask);
unsigned long __get_free_page(gfp_t gfp_mask, unsigned int order);
void * page_address(struct page *page);
// Get a page fill out by 0.
unsigned long get_zeroed_page(unsigned int gfp_mask);
free pages
void __free_pages(struct page *page, unsigned int order);
void free_pages(unsigned long addr, unsigned int order);
void free_page(unsigned long addr);
e.g
Get 8 pages
unsigned long page;
page = __get_free_pages(GFP_KERNEL, 3);
if (!page){
return -ENOMEM;
}
free_pages(page, 3);
kmalloc()
If you want apply one page or two and more, maybe get_free_page() is more suiteble;
kmalloc is suiteble for apply bytes level size
struct dog *p;
p = kmalloc(sizeof(struct dog), GFP_KERNEL);
kfree()
# include <linux/slab.h>
void kfree(const void *str);
char *buf;
buf = kmalloc(BUF_SIZE, GFP_ATOMIC);
if (!buf) {
kfree(buf);
}
gfp_mask mark
- 行为修饰符
- 区修饰符
__GFP_DMA
__GFP_DMA32
__GFP_HIGHMEM
In fact only these marks, there is no __GFP_NORMAL mark,
because default will use normal zone area, normally !
不能给_get_free_page & kmalloc() 指定ZONE_HIGHMEM, 因为这两个函数返回的都是逻辑地址,而不是page 结构。
只有alloc_pages()才能分配高端内存, 实际上大部分使用情况下,我们不需要指定zone的描述符,normal足以。
vmalloc()
void * vmalloc(unsigned long size);
void vfree(const void *addr);
vmalloc(): the area applied is virtual address, and must be continuous, the
physical address don't need be continuous!
kmalloc(): will make sure the physical address applied must be continuous, so, the virtual address must be continuous too naturelly!
Normally, hardware need physical memory address applied is continuous, because hardware is beside kernel's memory management, Hardware don't
know what is virtual address.
More kmalloc() but not vmalloc():
Athough, kmalloc() can apply continuous physical memory address, but it have many advantages, just like low performance consumption, So, we'd like
to use kmalloc() normally, but use vmalloc() only under extremely conditions
slab
There are two mainly struct at slab subsystem:
struct kmem_cache;
struct slabinfo;
There are three kind of status for each slab:
- fill
- partial
- empty
kmem_cache corresponed to a type of collected struct like "struct inode",
there are lots of small "struct" in kernel need to be "alloc" and "free"
frequently, So, Sun corporation designed "SLAB" conception to solve this
problem, Acttually, it is cache, alloc memory area pre, and use it like
a poll.
But we always misunderstand the conception between "struct kmem_cache"
and "struct slabinfo", We can introduce a new conception "A High Cache"
which is corresponding a "struct kmem_cache".
"struct kmem_cache" is corresponding to ONE type of "struct".
"struct slabinfo" is the subset of kmem_cache, each slab struct is a
set of memory address(maybe one or more pages)
struct kmem_cache {
unsigned int object_size;/* The original size of the object */
unsigned int size; /* The aligned/padded/added on size */
unsigned int align; /* Alignment as calculated */
slab_flags_t flags; /* Active flags on the slab */
const char *name; /* Slab name for sysfs */
int refcount; /* Use counter */
void (*ctor)(void *); /* Called on object slot creation */
struct list_head list; /* List of all slab caches on the system */
};
How to create A High Cache?
struct kmem_cache * kmem_cache_create(const char *name,
size_t size,
size_t align,
unsigned long flags,
void (*otor)(void *));
How to destroy A High Cache?
int kmem_cache_destroy(struct kmem_cache *cachep);
* if you want to destory this High Cache, you must make sure all slab
is empty
* return 0 means destroy success!
* alway used at a module be unset
How to alloc a objet from A High Cache?
There are more than one slab struct in "A High Cache". So, If we want
to alloc a address for a "small object struct", the condition is there
should have "not empty status slab" in this "A High Cache"!
void * kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags);
This will mark the object objp as status "unused".
void kmeme_cache_free(struct kmem_cache *cachep, void *objp;
A SLAB EXAMPLE
Let's analyse a example , the struct "task_struct".
Well, this is a very famous struct, right?
struct kmem_cache *task_struct_cachep; // This is kmem_cache name rule,
task_struct_cachep a variable point
to a struct kmem_cache.
task_struct_cachep = kmem_cache_create("task_struct",
sizeof(struct task_truct),
ARCH_MIN_TASKALIGN,
SLAB_PANIC | SLAB_NOTRACK,
NULL);
As bellow, we can see kmem_cache_create function's return value is the
kmem_cache struct.
So, we can say, we created a "A High Cache" named as "task_struct_cachep".
and the struct type will be stored in "task_struct_cachep" is "struct task_struct".
when excute fork() function, we must be create a new struct
"struct task_struct", the mainly work will be done at do_fork();
struct task_struct *tsk;
tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);
if (!tsk) {
return NULL;
}
...
...
kmem_cache_free(task_struct_cachep, tsk); //free object tsk from task_struct_cachep
int err;
err = kmem_cache_destroy(task_struct_cachep);
if (err) {
...
}
How kernel abstract memory
A global struct page array: mem_map[]
If your memory is 76G, you will have page count: 7610241024/4k = 19922944 pages, So, the mem_map[] array's size is 19922944.
NODE节点
- In NUMA structure. the NODE is abstract as
struct pglist_data, usually use it's typedef name called:pg_data_t. - the list
pgdat_listconnect withpg_data_t->node_next.
typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
struct zonelist node_zonelists[MAX_ZONELISTS];
int nr_zones;
#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
struct page *node_mem_map;
#ifdef CONFIG_PAGE_EXTENSION
struct page_ext *node_page_ext;
#endif
#endif
#ifndef CONFIG_NO_BOOTMEM
struct bootmem_data *bdata;
#endif
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Must be held any time you expect node_start_pfn, node_present_pages
* or node_spanned_pages stay constant. Holding this will also
* guarantee that any pfn_valid() stays that way.
*
* pgdat_resize_lock() and pgdat_resize_unlock() are provided to
* manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
*
* Nests above zone->lock and zone->span_seqlock
*/
spinlock_t node_size_lock;
#endif
unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page
range, including holes */
int node_id;
wait_queue_head_t kswapd_wait;
wait_queue_head_t pfmemalloc_wait;
struct task_struct *kswapd; /* Protected by
mem_hotplug_begin/end() */
int kswapd_order;
enum zone_type kswapd_classzone_idx;
int kswapd_failures; /* Number of 'reclaimed == 0' runs */
#ifdef CONFIG_COMPACTION
int kcompactd_max_order;
enum zone_type kcompactd_classzone_idx;
wait_queue_head_t kcompactd_wait;
struct task_struct *kcompactd;
#endif
#ifdef CONFIG_NUMA_BALANCING
/* Lock serializing the migrate rate limiting window */
spinlock_t numabalancing_migrate_lock;
/* Rate limiting time interval */
unsigned long numabalancing_migrate_next_window;
/* Number of pages migrated during the rate limiting time interval */
unsigned long numabalancing_migrate_nr_pages;
#endif
/*
* This is a per-node reserve of pages that are not available
* to userspace allocations.
*/
unsigned long totalreserve_pages;
#ifdef CONFIG_NUMA
/*
* zone reclaim becomes active if more unmapped pages exist.
*/
unsigned long min_unmapped_pages;
unsigned long min_slab_pages;
#endif /* CONFIG_NUMA */
/* Write-intensive fields used by page reclaim */
ZONE_PADDING(_pad1_)
spinlock_t lru_lock;
} pg_data_t;
mem reclaim
mem writeback
- 内存缓存
- 内存管理
其中内存缓存机制中,重要的结构体:
struct page {
unsigned long flags;
union {
struct address_space *mapping;
}
union {
pgoff_t index;
}
..
}
若页面Cache中页的所有者是文件,address_space对象就嵌入在VFS inode对象中的
i_data字段中。
i_mapping字段总是指向含有inode数据的页所有者的address_space对象,
address_space对象中的host字段指向其所有者的inode对象。
struct address_space {
struct inode *host;
struct radix_tree_root page_tree;
const struct address_space_operations *a_ops;
..
..
}
struct address_space_operations {
}
struct inode {
struct address_space *i_mapping;
struct address_space *i_data;
}
http://oenhan.com/linux-cache-writeback
kernel memory code learn的更多相关文章
- Kernel Memory Layout on ARM Linux
这是内核自带的文档,讲解ARM芯片的内存是如何布局的!比较简单,对于初学者可以看一下!但要想深入理解Linux内存管理,建议还是找几本好书看看,如深入理解Linux虚拟内存,嵌入系统分析,Linux内 ...
- 從 kernel source code 查出 版本號碼
kernel/Makefile 1 VERSION = 4 2 PATCHLEVEL = 4 3 SUBLEVEL = 21 4 EXTRAVERSION = 5 NAME = Blurry Fish ...
- linux kernel & source code analysis& hacking
https://kernelnewbies.org/ http://www.tldp.org/LDP/lki/index.html https://kernelnewbies.org/ML https ...
- Linux kernel Programming - Allocating Memory
kmalloc #include <linux/slab.h> void *kmalloc(size_t size,int flags); void kfree(void *addr); ...
- How to compile and install Linux Kernel 5.1.2 from source code
How to compile and install Linux Kernel 5.1.2 from source code Compiling a custom kernel has its adv ...
- Windows Kernel Security Training Courses
http://www.codemachine.com/courses.html#kerdbg Windows Kernel Internals for Security Researchers Thi ...
- Spring Boot Memory Performance
The Performance Zone is brought to you in partnership with New Relic. Quickly learn how to use Docke ...
- Microsoft Windows CE 5.0 Board Support Package, Boot Loader, and Kernel Startup Sequence
Summary Learn about the initial, low-level startup sequence and the hardware platform functions that ...
- linux kernel RCU 以及读写锁
信号量有一个很明显的缺点,没有区分临界区的读写属性,读写锁允许多个线程进程并发的访问临界区,但是写访问只限于一个线程,在多处理器系统中允许多个读者访问共享资源,但是写者有排他性,读写锁的特性如下:允许 ...
随机推荐
- C++学习之虚函数与纯虚函数
面向对象程序设计(object-oriented programming)的核心思想是数据抽象.继承.动态绑定.通过数据抽象,可以使类的接口与实现分离,使用继承,可以更容易地定义与其他类相似但不完全相 ...
- 使用NDIS驱动监測以太网络活动
转载自: http://blog.csdn.net/ddtpower/article/details/656687 本论文提供了NDIS的主要的理解,应用程序怎样与驱动程序交互.发挥驱动程序最佳性 ...
- iOS中的枚举:enum, NS_ENUM, NS_OPTIONS的使用区别
1.enum可以声明一般类型和位掩码(bitmasked)类型 例如: enum Test{// 一般枚举 TestA, TestB, TestC, }; enum{// 匿名枚举 TestA, Te ...
- 关于ZEDboard
核心芯片:核心ZYNQ XC7Z020CLG484 双核Cortex-A9 MPcore.主频达到667MHz,板载512MB内存 12V@3A的电源适配器 使用的SD卡中预装了Linaro系统,这是 ...
- ios16--自定义控件1
k控制器: // // XMGViewController.h #import <UIKit/UIKit.h> @interface XMGViewController : UIViewC ...
- bzoj2142 礼物——扩展卢卡斯定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...
- bzoj2179
fft裸题 我还没有背下来fft #include<bits/stdc++.h> #define pi acos(-1) using namespace std; ; int n, m, ...
- POI上传Excel的小问题处理
package com.platform.utils.excel; import com.platform.utils.RRException; import org.springframework. ...
- 【题解】动态逆序对 [CQOI2011] [P3157] [BZOJ3295] [P1393]
[题解]动态逆序对 [CQOI2011] [P3157] [BZOJ3295] [P1393] 水一水QAQ 题目链接: \([P3157]\) \([BZOJ3295]\) [题目描述] 对于一个序 ...
- flask 中的模板语法 jinja2及render_template的深度用法
是时候开始写个前端了,Flask中默认的模板语言是Jinja2 现在我们来一步一步的学习一下 Jinja2 捎带手把 render_template 中留下的疑问解决一下 首先我们要在后端定义几个字符 ...