tarjan求割边割点
tarjan求割边割点
内容及代码来自http://m.blog.csdn.net/article/details?id=51984469
割边:在连通图中,删除了连通图的某条边后,图不再连通。这样的边被称为割边,也叫做桥。
割点:在连通图中,删除了连通图的某个点以及与这个点相连的边后,图不再连通。这样的点被称为割点。
DFS搜索树:用DFS对图进行遍历时,按照遍历次序的不同,我们可以得到一棵DFS搜索树。

树边:在搜索树中的蓝色线所示,可理解为在DFS过程中访问未访问节点时所经过的边,也称为父子边
回边:在搜索树中的橙色线所示,可理解为在DFS过程中遇到已访问节点时所经过的边,也称为返祖边、后向边
观察DFS搜索树,我们可以发现有两类节点可以成为割点。对根节点u,若其有两棵或两棵以上的子树,则该根结点u为割点;对非叶子节点u(非根节点),若其中的某棵子树的节点均没有指向u的祖先节点的回边,说明删除u之后,根结点与该棵子树的节点不再连通;则节点u为割点。对于根结点,显然很好处理;但是对于非叶子节点,怎么去判断有没有回边是一个值得深思的问题。我们用dfn[u]记录节点u在DFS过程中被遍历到的次序号,low[u]记录节点u或u的子树通过非父子边追溯到最早的祖先节点(即DFS次序号最小),那么low[u]的计算过程如下。

对于给的例子,其求出的dfn和low数组如下。
id 123456
dfn 123456
low 111444
可以发现,对于情况2,当(u,v)为树边且low[v]≥dfn[u]时,节点u才为割点。而当(u,v)为树边且low[v]>dfn[u]时,表示v节点只能通过该边(u,v)与u连通,那么(u,v)即为割边。tarjan算法的时间复杂度是O(n+m)的,非常快。
以hihoCoder1183为例给出代码:
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int n,m,order=;
int low[],dfn[],father[],son[];
//father:父结点 son:子结点个数
vector<int> cutpoint,edge[];
vector< pair<int,int> > cutedge; void tarjan(int u)
{
dfn[u]=low[u]=++order;
bool flag=false;
for (int i=;i<edge[u].size();i++)
{
int v=edge[u][i];
if(!dfn[v])
{
son[u]++;
father[v]=u;
tarjan(v);
if(low[v]>=dfn[u]) flag=true;
//点u为割点
if(low[v]>dfn[u]) cutedge.push_back(make_pair(min(v,u),max(v,u)));
//边v-u为割边
low[u]=min(low[u],low[v]);
}
else if(v!=father[u]) low[u]=min(low[u],dfn[v]);
}
//根节点若有两棵或两棵以上的子树则该为割点
//非根节点若所有子树节点均没有指向u的祖先节点的回边则为割点
if((father[u]==&&son[u]>)||(father[u]&&flag)) cutpoint.push_back(u);
} int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
edge[u].push_back(v),edge[v].push_back(u);
}
tarjan();
sort(cutedge.begin(),cutedge.end());
sort(cutpoint.begin(),cutpoint.end());
if(==cutpoint.size()) puts("Null");
else
{
printf("%d",cutpoint[]);
for (int i=;i<cutpoint.size();i++) printf(" %d",cutpoint[i]);
puts("");
}
for(int i=;i<cutedge.size();i++) printf("%d %d\n",cutedge[i].first,cutedge[i].second);
}
不过话说一整篇博客,光复制别人的东西不大好,那我就上一个自己打的链表实现的代码:
#include<cstdio>
#include<vector>
#include<algorithm>
#define N 420000
using namespace std;
vector<int>cutpoint;
vector<pair<int,int> >cutedge;
int next[N],to[N],num,head[N],dfn[N],low[N],tim,son[N],father[N],n,m,a,b;
bool flag;
void add(int false_from,int false_to){
next[++num]=head[false_from];
to[num]=false_to;
head[false_from]=num;
}
void dfs(int x){
dfn[x]=low[x]=++tim;
bool flag=;
for(int i=head[x];i;i=next[i]){
if(!dfn[to[i]]){
son[x]++;
father[to[i]]=x;
dfs(to[i]);
if(low[to[i]]>=dfn[x])
flag=;
if(low[to[i]]>dfn[x])
cutedge.push_back(make_pair(min(x,to[i]),max(x,to[i])));
low[x]=min(low[x],low[to[i]]);
}
else
if(father[x]!=to[i])
low[x]=min(low[x],dfn[to[i]]);
}
if((!father[x]&&son[x]>)||(father[x]&&flag))
cutpoint.push_back(x);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i){
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
dfs();
sort(cutpoint.begin(),cutpoint.end());
sort(cutedge.begin(),cutedge.end());
printf("%d",cutpoint[]);
for(int i=;i<cutpoint.size();i++)
printf(" %d",cutpoint[i]);
printf("\n");
for(int i=;i<cutedge.size();i++)
printf("%d %d\n",cutedge[i].first,cutedge[i].second);
return ;
}
tarjan求割边割点的更多相关文章
- 【NOIP训练】【Tarjan求割边】上学
题目描述 给你一张图,询问当删去某一条边时,起点到终点最短路是否改变. 输入格式 第一行输入两个正整数,分别表示点数和边数.第二行输入两个正整数,起点标号为,终点标号为.接下来行,每行三个整数,表示有 ...
- ZOJ 2588 Burning Bridges (tarjan求割边)
题目链接 题意 : N个点M条边,允许有重边,让你求出割边的数目以及每条割边的编号(编号是输入顺序从1到M). 思路 :tarjan求割边,对于除重边以为中生成树的边(u,v),若满足dfn[u] & ...
- [学习笔记]tarjan求割边
上午打模拟赛的时候想出了第三题题解,可是我不会求割边只能暴力判割边了QAQ 所以,本文介绍求割边(又称桥). 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访 ...
- 图的连通性——Tarjan算法&割边&割点
tarjan算法 原理: 我们考虑 DFS 搜索树与强连通分量之间的关系. 如果结点 是某个强连通分量在搜索树中遇到的第⼀个结点,那么这个强连通分量的其余结点肯定 是在搜索树中以 为根的⼦树中. 被称 ...
- Tarjan求无向图割点、桥详解
tarjan算法--求无向图的割点和桥 一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不 ...
- 牛客小白月赛12 I (tarjan求割边)
题目链接:https://ac.nowcoder.com/acm/contest/392/I 题目大意:一个含有n个顶点m条边的图,求经过所有顶点必须要经过的边数. 例: 输入: 5 51 22 33 ...
- Light OJ 1026 - Critical Links (图论-双向图tarjan求割边,桥)
题目大意:双向联通图, 现在求减少任意一边使图的联通性改变,按照起点从小到大列出所有这样的边 解题思路:双向边模版题 tarjan算法 代码如下: #include<bits/stdc++.h& ...
- POJ 3694 Network(Tarjan求割边+LCA)
Network Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10969 Accepted: 4096 Descript ...
- Burning Bridges 求tarjan求割边
Burning Bridges 给出含有n个顶点和m条边的连通无向图,求出所有割边的序号. 1 #include <cstdio> 2 #include <cstring> 3 ...
随机推荐
- 合理设置apache的连接数及进程工作方式
网站在线人数增多,访问时很慢.初步认为是服务器资源不足了,但经反复测试,一旦连接上,不断点击同一个页面上不同的链接,都能迅速打开,这种现象就是说明apache最大连接数已经满了,新的访客只能排队等待有 ...
- Git团队协作 - 新feature的开发过程
新feature的开发过程 建议使用SmartGit,以下是命令行操作 git checkout -b dev (对于没有分支的人)新建dev分支 git pull origin dev拉取最新数据 ...
- Lambda表达式。
函数式编程思想: 面向对象思想:做一件事,先找能解决这件事的对象,然后调用该对象相应方法. 面向过程思想:只要能获取到结果,怎么做的不重要,重视结果,不重视过程. 冗余的代码: public stat ...
- 01认识Python和基础知识
1.了解Python Python的发展历史,作者Guido, 荷兰人 Python的优缺点 Python在网站的开发,如YouTube,科学计算,数据分析,在游戏后台开发等方面广泛使用 2.编写 ...
- Ubuntu docker 使用命令 系列二
1.下载官方远程仓下的镜像:sudo docker pull <docker 镜像> ,sudo docker pull centos (没有指定版本,就是下载的最新的os) 2. 下载某 ...
- Hyperledger(超级账本)的worldstate和SAP CRM的CRMD_CUMULAT_H
Hyperledger fabric是基于区块链技术的一个开源项目,由Linux基金会于2015年发起,目的是推进区块链数字技术和交易验证的发展和落地. Hyperledger由多个区块构成了一个有序 ...
- (转)在编写Spring框架的配置文件时,标签无提示符的解决办法
http://blog.csdn.net/yerenyuan_pku/article/details/52831618 问题描述 初学者在学习Spring框架的过程中,大概会碰到这样一个问题:在编写S ...
- dmesg -检测和控制内核环缓冲
NAME dmesg - print or control the kernel ring buffer 总览 dmesg [ -c ] [ -n 级别 ] [ -s 缓冲区大小 ] 描述 dmesg ...
- Kubernetes 架构(上)【转】
Kubernetes Cluster 由 Master 和 Node 组成,节点上运行着若干 Kubernetes 服务. Master 节点 Master 是 Kubernetes Cluster ...
- Python虚拟环境 之 virtualenv 与 virtualenvwrapper
在开发Python应用程序的时候,比如系统安装的Python3只有一个版本:3.6.所有第三方的包都会被 pip 安装到Python3的 site-packages 目录下. 如果我们要 ...