题目:https://www.luogu.org/problemnew/show/P3377

左偏树的模板题;

加深了我对空 merge 的理解;

结构体的编号就是原序列的位置。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=1e5+;
int n,m,rt[maxn],fa[maxn];
bool out[maxn];
struct N{
int ls,rs,val,dis;
}t[maxn];
int get(int x){while(rt[x])x=rt[x]; return x;}
int merge(int x,int y)
{
if(!x||!y)return x+y;
if(t[x].val>t[y].val||(t[x].val==t[y].val&&x>y))swap(x,y);
t[x].rs=merge(t[x].rs,y);
if(t[t[x].ls].dis<t[t[x].rs].dis)swap(t[x].ls,t[x].rs);
if(t[x].rs)t[x].dis=t[t[x].rs].dis+;
else t[x].dis=;
rt[t[x].ls]=rt[t[x].rs]=x;
return x;
}
void del(int x)
{
out[x]=;
rt[t[x].ls]=rt[t[x].rs]=;
merge(t[x].ls,t[x].rs);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=,x;i<=n;i++){scanf("%d",&x); t[i].val=x;}
for(int i=,op,x,y,u,v;i<=m;i++)
{
scanf("%d%d",&op,&x);
if(op==)
{
scanf("%d",&y);
if(out[x]||out[y])continue;
u=get(x); v=get(y);
if(u==v)continue;
merge(u,v);
}
else
{
if(out[x]){printf("-1\n"); continue;}
u=get(x); printf("%d\n",t[u].val);
del(u);
}
}
return ;
}

洛谷 P3377 模板左偏树的更多相关文章

  1. 洛谷 - P1552 - 派遣 - 左偏树 - 并查集

    首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...

  2. 洛谷.4897.[模板]最小割树(Dinic)

    题目链接 最小割树模板.具体见:https://www.cnblogs.com/SovietPower/p/9734013.html. ISAP不知为啥T成0分了.. Dinic: //1566ms ...

  3. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  4. 洛谷P3377 【模板】左偏树(可并堆) 题解

    作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...

  5. 模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)

    P3377 [模板]左偏树(可并堆) 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删 ...

  6. 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集

    https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...

  7. [洛谷P3377]【模板】左偏树(可并堆)

    题目大意:有$n$个数,$m$个操作: $1\;x\;y:$把第$x$个数和第$y$个数所在的小根堆合并 $2\;x:$输出第$x$个数所在的堆的最小值 题解:左偏树,保证每个的左儿子的距离大于右儿子 ...

  8. k短路模板(洛谷P2483 [SDOI2010]魔法猪学院)(k短路,最短路,左偏树,priority_queue)

    你谷数据够强了,以前的A*应该差不多死掉了. 所以,小伙伴们快来一起把YL顶上去把!戳这里! 俞鼎力的课件 需要掌握的内容: Dijkstra构建最短路径树. 可持久化堆(使用左偏树,因其有二叉树结构 ...

  9. 2021.08.01 P3377 左偏树模板

    2021.08.01 P3377 左偏树模板 P3377 [模板]左偏树(可并堆) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) #include<iostream> ...

随机推荐

  1. cmd命令安装、卸载、启动和停止Windows Service

    1.运行--〉cmd:打开cmd命令框 2.在命令行里定位到InstallUtil.exe所在的位置 InstallUtil.exe 默认的安装位置是在C:/Windows/Microsoft.NET ...

  2. 转来的--轻松自动化---selenium-webdriver(python) (七)---定位iframe——转来的

    本节知识点: 多层框架或窗口的定位: switch_to_frame() switch_to_window() 智能等待: implicitly_wait() 对于一个现代的web应用,经常会出现框架 ...

  3. 嵌入式LinuxC语言程序设计基础教程

    第1章 嵌入式LinxuC语言开发工具 第2章 数据 第3章 数据的输入输出 第4章 运算符和表达式 第5章 程序结构和控制语句 第6章 数组 第7章 指针 第8章 函数 第9章 用户自定义数据类型 ...

  4. Maven_自动化构建和构建环节

    [构建过程的几个主要环节] ①清理:删除以前的编译结果,为重新编译做好准备. ②编译:将 Java 源程序编译为字节码文件. ③测试:针对项目中的关键点进行测试,确保项目在迭代开发过程中关键点的正确性 ...

  5. fzu2143 Board Game

    Board Game Accept: 54    Submit: 151Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Descri ...

  6. HDU 1159 LCS最长公共子序列

    #include <cstdio> #include <cstring> using namespace std; ; #define max(a,b) a>b?a:b ...

  7. noip模拟赛 算

    [问题背景]zhx 帮他妹子做数学题.[问题描述]求: 如 N=3, M=3, 这个值为 1^1+1^2+1^3+2^1+2^2+2^3+3^1+3^2+3^3=56. [输入格式]仅一行, 包含两个 ...

  8. 这段百度问答,对我相关有对啊!!!----如何获取Windows系统登陆用户名

    如何获取Windows系统登陆用户名 http://zhidao.baidu.com/link?url=Hva9PkVwYZv8KSEWftSqTWe8fqM1dhoq59BurnfADmcOvFjF ...

  9. [bzoj1613][Usaco2008 Jan]Running贝茜的晨练计划_动态规划

    Running贝茜的晨练计划 bzoj-1613 Usaco-2008 Jan 题目大意:题目链接(U组题题意真的是没法概括qwq....). 注释:略. 想法:一眼dp题. 状态:dp[i][j]表 ...

  10. POJ 1475 推箱

    推箱 时限:n.2000MS   内存限制:n.131072K 提交材料共计: 6600   接受: 2263   特别法官 描述 想象一下你站在一个二维迷宫里,由方形细胞组成,它们可能或可能不会充满 ...