题面

传送门

题解

好吧我是不太会复杂度分析……

我们对于每种颜色用一个数据结构维护(比方说线段树或者平衡树,代码里写的平衡树),那么区间询问很容易就可以解决了

所以现在的问题是区间修改,如果区间颜色相等直接\(O(\log n)\)修改就好了,否则的话,一个很暴力的思路是把区间分成若干段颜色相等的部分,每一个部分都直接\(O(\log n)\)修改

乍看这样是\(gg\)的,但是我们仔细观察一下,每一次修改的时候只有相邻两段颜色不同的时候会贡献\(O(\log n)\)的复杂度,而初始时段数是\(O(n)\)的,每一次修改的时候增加的段数是常数,所以总的复杂度是\(O((n+m)\log n)\)

ps:因为修改的时候要暴力跳区间需要资瓷查询某个点的颜色所以写了个珂朵莉树

pps:虽然说起来很简单但是调起来非常麻烦……

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R int x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
inline char getop(){R char ch;while((ch=getc())>'Z'||ch<'A');return ch;}
unsigned int aaa=19260817;
inline unsigned int rd(){aaa^=aaa>>15,aaa+=aaa<<12,aaa^=aaa>>3;return aaa;}
const int N=5e5+5;
struct node;typedef node* ptr;
struct node{
ptr lc,rc;int v,sz;unsigned int pr;
inline ptr init(R int val){return v=val,sz=1,pr=rd(),this;}
inline ptr upd(){return sz=lc->sz+rc->sz+1,this;}
}e[N],*pp=e,*pl,*pr;map<int,ptr>rt;
inline ptr newnode(R int v){return ++pp,pp->lc=pp->rc=e,pp->init(v);}
void split(ptr p,int k,ptr &s,ptr &t){
if(p==e)return s=t=e,void();
if(p->v<=k)s=p,split(p->rc,k,p->rc,t);
else t=p,split(p->lc,k,s,p->lc);
p->upd();
}
ptr merge(ptr s,ptr t){
if(s==e)return t;if(t==e)return s;
if(s->pr<t->pr)return s->rc=merge(s->rc,t),s->upd();
return t->lc=merge(s,t->lc),t->upd();
}
int n,m,lasans,a[N];
struct zz{
int l,r;mutable int v;
inline zz(R int li,R int ri=0,R int vi=0):l(li),r(ri),v(vi){}
inline bool operator <(const zz &b)const{return l<b.l;}
};set<zz>s;typedef set<zz>::iterator IT;
IT split(int pos){
IT it=s.lower_bound(zz(pos));
if(it!=s.end()&&it->l==pos)return it;
--it;int l=it->l,r=it->r,v=it->v;
s.erase(it),s.insert(zz(l,pos-1,v));
return s.insert(zz(pos,r,v)).first;
}
void update(int l,int r,int v){
IT itr=split(r+1),itl=split(l);
s.erase(itl,itr),s.insert(zz(l,r,v));
}
int ask(int pos){
IT it=s.lower_bound(zz(pos));
if(it==s.end()||it->l!=pos)--it;
return it->v;
}
int Kth(ptr p,int k){
if(p->lc->sz==k-1)return p->v;
if(p->lc->sz>=k)return Kth(p->lc,k);
return Kth(p->rc,k-p->lc->sz-1);
}
int query(ptr &rt,int l,int r,int k){
ptr s,t,p,q;
split(rt,l-1,s,t),split(t,r,p,q);
int now=p->sz>=k?Kth(p,k):0;
return rt=merge(s,merge(p,q)),now;
}
void divide(ptr p,int k,int r,ptr &s,ptr &t){
if(p==e)return s=t=e,void();
if(p->lc->sz+k==p->v&&p->v<=r)s=p,divide(p->rc,k+p->lc->sz+1,r,p->rc,t);
else t=p,divide(p->lc,k,r,s,p->lc);
p->upd();
}
int change(ptr &p,int k,int r){
ptr s,t,f,g;int now;
split(p,k-1,f,g),divide(g,k,r,s,t);
now=Kth(s,s->sz),p=merge(f,t),pl=merge(pl,s);
return now+1;
}
int main(){
// freopen("gold1.in","r",stdin);
n=read(),m=read(),lasans=0,e->lc=e->rc=e;
fp(i,1,n){
a[i]=read();if(rt[a[i]]==NULL)rt[a[i]]=e;
rt[a[i]]=merge(rt[a[i]],newnode(i));
s.insert(zz(i,i,a[i]));
}
for(int op,l,r,v,k,tl,tr,c;m;--m){
op=getop(),l=read()^lasans,r=read()^lasans;
if(op=='M'){
v=read()^lasans,tl=l,tr=r;if(rt[v]==NULL)rt[v]=e;
split(rt[v],l-1,pl,pr),split(pr,r,rt[v],pr);
while(tl<=tr)c=ask(tl),tl=change(rt[c],tl,r);
rt[v]=merge(pl,pr);
update(l,r,v);
}else{
k=read()^lasans,v=read()^lasans;if(rt[v]==NULL)rt[v]=e;
print(lasans=query(rt[v],l,r,k));
}
}
return Ot(),0;
}

LOJ#557. 「Antileaf's Round」你这衣服租来的吗(FHQ Treap+珂朵莉树)的更多相关文章

  1. LOJ #556. 「Antileaf's Round」咱们去烧菜吧

    好久没更博了 咕咕咕 现在多项式板子的常数巨大...周末好好卡波常吧.... LOJ #556 题意 给定$ m$种物品的出现次数$ B_i$以及大小$ A_i$ 求装满大小为$[1..n]$的背包的 ...

  2. 【刷题】LOJ 556 「Antileaf's Round」咱们去烧菜吧

    题目描述 你有 \(m\) 种物品,第 \(i\) 种物品的大小为 \(a_i\) ​,数量为 \(b_i\)​( \(b_i=0\) 表示有无限个). 你还有 \(n\) 个背包,体积分别为 \(1 ...

  3. loj558 「Antileaf's Round」我们的CPU遭到攻击

    考完了可以发题解了. 做法是link-cut tree维护子树信息,并不需要维护黑树白树那些的. 下面是一条重链: 如果4是根的话,那么在splay上是这样的: 在splay中,子树的信息都已经计算完 ...

  4. 「学习笔记」珂朵莉树 ODT

    珂朵莉树,也叫ODT(Old Driver Tree 老司机树) 从前有一天,珂朵莉出现了... 然后有一天,珂朵莉树出现了... 看看图片的地址 Codeforces可还行) 没错,珂朵莉树来自Co ...

  5. 「LOJ 556 Antileaf's Round」咱们去烧菜吧

    「LOJ 556 Antileaf's Round」咱们去烧菜吧 最近在看 jcvb 的生成函数课件,顺便切一切上面讲到的内容的板子题,这个题和课件上举例的背包计数基本一样. 解题思路 首先列出答案的 ...

  6. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  7. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  8. Loj #2321. 「清华集训 2017」无限之环

    Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...

  9. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

随机推荐

  1. [K/3Cloud] 单据新增、复制、新增行、复制行的过程

    整单复制:先执行CopyData(获得数据包),在执行AfterCreateNewData(可处理数据包),不会执行AfterCreateNewEntryRow 单据新增:先执行AfterCreate ...

  2. request详究

    本文主要是对在学习过程中遇到的request用法进行归纳总结,彻底的搞明白request在jsp中的作用. 百度百科的介绍如下: Request对象的作用是与客户端交互,收集客户端的Form.Cook ...

  3. c++ stl 使用汇总(string,vector,map,set)

    1.string 1>substr(),截取字串的方法.返回一个从指定位置开始,并具有指定长度的子字符串.参数 start(必选),所需的子字符串的起始位置.字符串中第一个字符的索引为 0.le ...

  4. Linux下keepalived下载安装与配置

    一.下载(原文链接:http://www.studyshare.cn/blog-front//software/details/1158/0 ) 网盘下载:https://pan.baidu.com/ ...

  5. 【Nginx】负载均衡-加权轮询策略剖析

    转自:江南烟雨 本文介绍的是客户端请求在多个后端服务器之间的均衡,注意与客户端请求在多个nginx进程之间的均衡相区别. 如果Nginx是以反向代理的形式配置运行,那么对请求的实际处理需要转发到后端服 ...

  6. Android网络爬虫程序(基于Jsoup)

    摘要:基于 Jsoup 实现一个 Android 的网络爬虫程序,抓取网页的内容并显示出来.写这个程序的主要目的是抓取海投网的宣讲会信息(公司.时间.地点)并在移动端显示,这样就可以随时随地的浏览在学 ...

  7. cocos2d-x 求相交矩阵

    cocos2d-x有推断矩阵相交的方法 CCRect::intersectsRect(CCRect& rect)但可惜没有提供求两个相交矩阵的方法,我作了总结,代码例如以下: CCRect T ...

  8. Android 代码设置Activity 背景透明

    当指定Activity 样式 Them.Dialog 时候 又不同意用XML 设置 Activity 的背景颜色的时候 用代码 this.getWindow().getDecorView().setB ...

  9. Python爬虫开发【第1篇】【Requests】

    1.安装 利用 pip 安装 或者利用 easy_install 都可以完成安装: pip install requests easy_install requests 2.基本GET请求(heade ...

  10. Android学习笔记-传感器开发之利用传感器和Tween开发简易指南针

    本次我们学习Android传感器的开发,前面已经介绍过了,tween的使用,所以,我们可以结合传感器与tween动画,开发简易的指南针. 首先先介绍一下传感器的相关知识, 在Android应用程序中使 ...