题面

传送门

题解

好吧我是不太会复杂度分析……

我们对于每种颜色用一个数据结构维护(比方说线段树或者平衡树,代码里写的平衡树),那么区间询问很容易就可以解决了

所以现在的问题是区间修改,如果区间颜色相等直接\(O(\log n)\)修改就好了,否则的话,一个很暴力的思路是把区间分成若干段颜色相等的部分,每一个部分都直接\(O(\log n)\)修改

乍看这样是\(gg\)的,但是我们仔细观察一下,每一次修改的时候只有相邻两段颜色不同的时候会贡献\(O(\log n)\)的复杂度,而初始时段数是\(O(n)\)的,每一次修改的时候增加的段数是常数,所以总的复杂度是\(O((n+m)\log n)\)

ps:因为修改的时候要暴力跳区间需要资瓷查询某个点的颜色所以写了个珂朵莉树

pps:虽然说起来很简单但是调起来非常麻烦……

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R int x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
inline char getop(){R char ch;while((ch=getc())>'Z'||ch<'A');return ch;}
unsigned int aaa=19260817;
inline unsigned int rd(){aaa^=aaa>>15,aaa+=aaa<<12,aaa^=aaa>>3;return aaa;}
const int N=5e5+5;
struct node;typedef node* ptr;
struct node{
ptr lc,rc;int v,sz;unsigned int pr;
inline ptr init(R int val){return v=val,sz=1,pr=rd(),this;}
inline ptr upd(){return sz=lc->sz+rc->sz+1,this;}
}e[N],*pp=e,*pl,*pr;map<int,ptr>rt;
inline ptr newnode(R int v){return ++pp,pp->lc=pp->rc=e,pp->init(v);}
void split(ptr p,int k,ptr &s,ptr &t){
if(p==e)return s=t=e,void();
if(p->v<=k)s=p,split(p->rc,k,p->rc,t);
else t=p,split(p->lc,k,s,p->lc);
p->upd();
}
ptr merge(ptr s,ptr t){
if(s==e)return t;if(t==e)return s;
if(s->pr<t->pr)return s->rc=merge(s->rc,t),s->upd();
return t->lc=merge(s,t->lc),t->upd();
}
int n,m,lasans,a[N];
struct zz{
int l,r;mutable int v;
inline zz(R int li,R int ri=0,R int vi=0):l(li),r(ri),v(vi){}
inline bool operator <(const zz &b)const{return l<b.l;}
};set<zz>s;typedef set<zz>::iterator IT;
IT split(int pos){
IT it=s.lower_bound(zz(pos));
if(it!=s.end()&&it->l==pos)return it;
--it;int l=it->l,r=it->r,v=it->v;
s.erase(it),s.insert(zz(l,pos-1,v));
return s.insert(zz(pos,r,v)).first;
}
void update(int l,int r,int v){
IT itr=split(r+1),itl=split(l);
s.erase(itl,itr),s.insert(zz(l,r,v));
}
int ask(int pos){
IT it=s.lower_bound(zz(pos));
if(it==s.end()||it->l!=pos)--it;
return it->v;
}
int Kth(ptr p,int k){
if(p->lc->sz==k-1)return p->v;
if(p->lc->sz>=k)return Kth(p->lc,k);
return Kth(p->rc,k-p->lc->sz-1);
}
int query(ptr &rt,int l,int r,int k){
ptr s,t,p,q;
split(rt,l-1,s,t),split(t,r,p,q);
int now=p->sz>=k?Kth(p,k):0;
return rt=merge(s,merge(p,q)),now;
}
void divide(ptr p,int k,int r,ptr &s,ptr &t){
if(p==e)return s=t=e,void();
if(p->lc->sz+k==p->v&&p->v<=r)s=p,divide(p->rc,k+p->lc->sz+1,r,p->rc,t);
else t=p,divide(p->lc,k,r,s,p->lc);
p->upd();
}
int change(ptr &p,int k,int r){
ptr s,t,f,g;int now;
split(p,k-1,f,g),divide(g,k,r,s,t);
now=Kth(s,s->sz),p=merge(f,t),pl=merge(pl,s);
return now+1;
}
int main(){
// freopen("gold1.in","r",stdin);
n=read(),m=read(),lasans=0,e->lc=e->rc=e;
fp(i,1,n){
a[i]=read();if(rt[a[i]]==NULL)rt[a[i]]=e;
rt[a[i]]=merge(rt[a[i]],newnode(i));
s.insert(zz(i,i,a[i]));
}
for(int op,l,r,v,k,tl,tr,c;m;--m){
op=getop(),l=read()^lasans,r=read()^lasans;
if(op=='M'){
v=read()^lasans,tl=l,tr=r;if(rt[v]==NULL)rt[v]=e;
split(rt[v],l-1,pl,pr),split(pr,r,rt[v],pr);
while(tl<=tr)c=ask(tl),tl=change(rt[c],tl,r);
rt[v]=merge(pl,pr);
update(l,r,v);
}else{
k=read()^lasans,v=read()^lasans;if(rt[v]==NULL)rt[v]=e;
print(lasans=query(rt[v],l,r,k));
}
}
return Ot(),0;
}

LOJ#557. 「Antileaf's Round」你这衣服租来的吗(FHQ Treap+珂朵莉树)的更多相关文章

  1. LOJ #556. 「Antileaf's Round」咱们去烧菜吧

    好久没更博了 咕咕咕 现在多项式板子的常数巨大...周末好好卡波常吧.... LOJ #556 题意 给定$ m$种物品的出现次数$ B_i$以及大小$ A_i$ 求装满大小为$[1..n]$的背包的 ...

  2. 【刷题】LOJ 556 「Antileaf's Round」咱们去烧菜吧

    题目描述 你有 \(m\) 种物品,第 \(i\) 种物品的大小为 \(a_i\) ​,数量为 \(b_i\)​( \(b_i=0\) 表示有无限个). 你还有 \(n\) 个背包,体积分别为 \(1 ...

  3. loj558 「Antileaf's Round」我们的CPU遭到攻击

    考完了可以发题解了. 做法是link-cut tree维护子树信息,并不需要维护黑树白树那些的. 下面是一条重链: 如果4是根的话,那么在splay上是这样的: 在splay中,子树的信息都已经计算完 ...

  4. 「学习笔记」珂朵莉树 ODT

    珂朵莉树,也叫ODT(Old Driver Tree 老司机树) 从前有一天,珂朵莉出现了... 然后有一天,珂朵莉树出现了... 看看图片的地址 Codeforces可还行) 没错,珂朵莉树来自Co ...

  5. 「LOJ 556 Antileaf's Round」咱们去烧菜吧

    「LOJ 556 Antileaf's Round」咱们去烧菜吧 最近在看 jcvb 的生成函数课件,顺便切一切上面讲到的内容的板子题,这个题和课件上举例的背包计数基本一样. 解题思路 首先列出答案的 ...

  6. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  7. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  8. Loj #2321. 「清华集训 2017」无限之环

    Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...

  9. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

随机推荐

  1. HDU 2147 找规律博弈

    题目大意: 从右上角出发一直到左下角,每次左移,下移或者左下移,到达左下角的人获胜 到达左下角为必胜态,那么到达它的所有点都为必败态,每个点的局势都跟左,下,左下三个点有关 开始写了一个把所有情况都计 ...

  2. SpringBoot入门系列~Spring-Data-JPA自动建表

    1.pom.xml引入Spring-Data-Jpa和mysql依赖 <!-- Spring-data-jpa依赖 --> <dependency> <groupId&g ...

  3. msp430入门学习00

    在TI官网上找到MSP430的程序例程.数据手册.使用指南等文件.以MSP430F169为例,步骤如下: 1)进入ti官网:http://www.ti.com.cn/ 或者http://www.ti. ...

  4. [bzoj3513][MUTC2013]idiots_FFT

    idiots bzoj-3513 MUTC-2013 题目大意:给定$n$根木棍,问随机选择三根能构成三角形的概率. 注释:$1\le n\le 3\cdot 10^5$,$1\le a_i\le 1 ...

  5. codevs——1081 线段树练习 2

    1081 线段树练习 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解       题目描述 Description 给你N个数,有两种操作 1:给 ...

  6. 输入一个URL之后。。。

    1.输入URL2.浏览器去浏览器缓存.系统缓存.路由器缓存查找缓存记录,有则直接访问URL对应的IP,无则下一步3.DNS解析URL,获得对应的IP4.浏览器通过TCP/IP三次握手连接服务器5.客户 ...

  7. Ubuntu 16.04安装QtCharts时报错:'qtConfig' is not a recognized test function.

    错误: 'qtConfig' is not a recognized test function. 解决方法: 其实5.9分支的版本有问题,转成5.7分支即可. git clone https://g ...

  8. mysql的时间戳说白了就俩问题,自动更新问题和不自动更新问题

    mysql的时间戳timestamp说白了就俩问题,自动更新问题和不自动更新问题

  9. 86. LotusScript中的数组函数

    R6对LotusScript有一些改进和增强,自那之后.Notes对象的接口时有补充和更新,但语言本身没有变化.那些改进就包括添加诸如ArrayGetIndex.ArrayUnique的实用函数. 但 ...

  10. django 名词解释

    1) 什么是slug http://stackoverflow.com/questions/427102/what-is-a-slug-in-django 如上链接红色部分就是slug,它就是链接的最 ...