分块+二分

这道题思路很巧妙

我们大概可以推出一个式子sigma(d-[(ai-1)%d+1])<=k,要求求出d的最大值

然后我们化简一下,sigma(d-[(ai-1)-[(ai-1)/d]*d+1])<=k -> sigma(d-ai-[(ai-1)/d]*d)<=k

直接枚举肯定炸,但是我们看见里面有一个下取整除法,我们想到了什么?莫比乌斯反演中的分块技巧!那么我们可以通过分块来减少枚举d的复杂度,然后在一定取值范围内二分就行了!

然后,我们对于每个ai-1查找分块对应端点的最小值,也就是一段使得(ai-1)/d第一个变化的值,而其他值没有变化,也就是说我们对于每个ai枚举分块端点值后,每两个值相邻区间的值不会改变任何一个(ai-1)/d的值。

然后每个ai有sqrt(ai)个值,那么一共就有n*sqrt(max(ai))的值,然后我们从大到小枚举每个值,如果一个值满足条件,那么我们需要二分找出满足答案的最大值,因为这个值只是在从这个值到下一个值-1这一段区间内任意(ai-1)/d不变,但是不一定满足,由于现在(ai-1)/d不变,那么上面那个式子就满足单调性了,于是就可以二分了。

如果枚举的值范围过大,我们在看见除法的情况下可以用分块优化,可以大大降低复杂度,因为分块求出使一个值变化的最小的除数,这样我们就可以求出所有区间使得取这个区间内任意一个值所有数做除法的商不变

最后push_back(j)是(ai-1)/d==0,其实也就是ai

#include<bits/stdc++.h>
using namespace std;
const int N = ;
int n;
long long k, ans, sum, m;
long long a[N];
vector<long long> v;
int main()
{
scanf("%d%I64d", &n, &k);
for(int i = ; i <= n; ++i) scanf("%I64d", &a[i]), sum += a[i], m = max(m, a[i]);
long long tot = k + m;
for(int i = ; i <= n ; ++i)
{
long long j, t;
for(j = , t = ; j < a[i] && t < a[i]; j = t + )
v.push_back(j), t = (a[i] - ) / ((a[i] - ) / j);
v.push_back(j);
}
for(int i = ; i < v.size(); ++i) printf("%I64d ", v[i]);
puts("");
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
v.push_back(100000000000000ll);
for(int i = v.size() - ; i >= ; --i)
{
long long x = v[i];
long long tot = ;
for(int j = ; j <= n; ++j) tot += (a[j] - ) / x;
if(x * tot <= k + sum - (long long)n * x)
{
long long l = x - , r = v[i + ];
while(r - l > 1ll)
{
long long mid = (l + r) >> 1ll;
if(mid * tot <= k + sum - (long long)n * mid) l = ans = mid;
else r = mid;
}
break;
}
}
cout << ans << endl;
return ;
}

830C的更多相关文章

  1. Codeforces 830C On the Bench

    题意:给你n个数,问有多少种排列方式使得任意两个相邻的数的乘积都不是完全平方数 我好弱,被组合和数论吊着打... 首先我们可以把每个数中固有的完全平方数给分离出来,那么答案其实就只与处理后的序列相关. ...

  2. Codeforces 830C Bamboo Partition 其他

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF830C.html 题解 把问题转化成求最大的 $d$ ,满足$$\sum_{1\leq i \leq n}( ...

  3. Codeforces 830C Bamboo Partition (看题解)

    Bamboo Partition 列公式, 整除分块, 想不到, 好菜啊. #include<bits/stdc++.h> #define LL long long #define fi ...

  4. 【CodeForces 830C】奇怪的降复杂度

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=60638239 description 有n棵竹子 ...

  5. utf-8 汉字对照表

    之前从redis中取出一些数据,utf8 16进制编码,想转成字符,没有找到现成的转化工具,先用这个表直接查找对照吧. UTF8编码表大全Code code# Code (coded in UTF-8 ...

  6. JS base64 加密和 后台 base64解密(防止中文乱码)

    直接上代码 1,js(2个文件,网上找的)  不要觉的长,直接复制下来就OK //UnicodeAnsi.js文件 //把Unicode转成Ansi和把Ansi转换成Unicode function ...

  7. 基于nodejs实现js后端化处理

    今天D哥给我提了个问题,"用php执行过js没"?咋一听,没戏~~毕竟常规情况下,js是依赖浏览器运行的.想在php后端采集的同时利用js运行结果并传递给php使用,没戏! 然后回 ...

  8. usb.ids

    # # List of USB ID's # # Maintained by Vojtech Pavlik <vojtech@suse.cz> # If you have any new ...

  9. utf8汉字编码16进制对照

           utf8汉字编码16进制对照  GB    Unicode  UTF-8     Chinese Character Code  code# Code      (coded in UT ...

随机推荐

  1. 测试Mysql悲观锁

  2. loadrunner 添加负载机

    1.打开Controller 2. 添加负载 3. 配置参数 4.完成

  3. Python关于函数作为返回值的理解(3分钟就看完了)

    话不多说,直接看例子,上代码: def line_conf(): def line(x): return 2 * x + 1 return line #return a function object ...

  4. jsp学习之如何在web层创建Servlet

    jsp动态网页的文件目录结构如下: 1.src下存放java代码 2.包web_xx为web层 3.webcontent里面是jsp文件 jsp页面中的请求交付给servlet处理,在实际中 jsp的 ...

  5. [luoguP3402] 最长公共子序列(DP + 离散化 + 树状数组)

    传送门 比 P1439 排列LCS问题,难那么一点点,只不过有的元素不是两个串都有,还有数据范围变大,树状数组得打离散化. 不过如果用栈+二分的话还是一样的. ——代码 #include <cs ...

  6. codeforces 361B

    #include<stdio.h> int a[100100]; int main() { int n,i,k; while(scanf("%d%d",&n,& ...

  7. MT6755 平台手机皮套驱动实现

    是自己写注册一个input device,模仿keypad,在对应的中断处理函数中上报power key的键值. 具体实现代码如下: 在 alps/kernel-3.10/drivers/misc/m ...

  8. 【BZOJ3669】魔法森林(LCT)

    题意:有一张无向图,每条边有两个权值.求选取一些边使1和n连通,且max(a[i])+max(b[i])最小 2<=n<=50,000 0<=m<=100,000 1<= ...

  9. SpringBoot学习day01

    SpringBoot目的在于创建和启动新的基于Spring框架的项目.SpringBoot会选择最合适的Spring子项目和第三方开源库进行整合.大部分SpringBoot应用只需要非常少量的配置就可 ...

  10. 洛谷 P4470 [BJWC2018]售票

    P4470 [BJWC2018]售票 C 市火车站最近出现了一种新式自动售票机.买票时,乘客要先在售票机上输入终点名称.一共有N 处:目的地,随着乘客按顺序输入终点名称的每个字母,候选终点站数目会逐渐 ...