传送门

蒟蒻我原本还想着跑两边spfa,发现不行,就gg了。

首先这道题卡spfa,所以需要用堆优化的dijkstra求出最短路径

因为题目中说了,保证最短路径有且只有一条,所以可以通过dfs求出最短路径树

发现,需要给这课树加边,才能有别的路径到达一个点x

那么我们连接树上两个节点u,v,边权为w

发现,u,v到两点公共祖先的路径上的所有点(除去lca)的答案都会受到影响

且ans[i] = dis[u] + dis[v] + w - dis[i]

要使得ans最小,需要dis[u] + dis[v] + w最小,

那么直接树剖暴力修改不就好了?

另一种思路

我们可以把所有非树边取出,以dis[u] + dis[v] + w为关键字排一下,

显然,每一个点都只会求解一次,往后都不会更新答案

可以用并查集,已经更新答案的点就用并查集连接到lca,下次遇到已经更新过的点直接往上跳即可

找lca的过程和树剖类似

时间复杂度比树剖不知道高到哪里去了!

网上还有一些用左偏树或是单调队列做的,看样子好高深,蒟蒻没搞懂。。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 200001
#define heap pair<int, int> using namespace std; int n, m, cnt, tot;
int head[N], to[N << 1], val[N << 1], next[N << 1], dis[N], deep[N], ans[N], pre[N], f[N];
bool vis[N << 1];
priority_queue <heap, vector <heap>, greater <heap> > q;
vector <int> g; struct node
{
int x, y, z;
node(int x = 0, int y = 0, int z = 0) : x(x), y(y), z(z) {}
}p[N << 1]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void add(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline void dijkstra()
{
int i, u, v;
memset(dis, 127, sizeof(dis));
dis[1] = 0;
q.push(make_pair(0, 1));
while(!q.empty())
{
u = q.top().second;
q.pop();
if(vis[u]) continue;
vis[u] = 1;
for(i = head[u]; i ^ -1; i = next[i])
{
v = to[i];
if(dis[v] > dis[u] + val[i])
{
dis[v] = dis[u] + val[i];
q.push(make_pair(dis[v], v));
}
}
}
} inline void dfs(int u, int d)
{
int i, v;
deep[u] = d;
for(i = head[u]; i ^ -1; i = next[i])
{
v = to[i];
if(dis[v] == dis[u] + val[i])
{
vis[i] = vis[i ^ 1] = 1;
pre[v] = u;
dfs(v, d + 1);
}
}
} inline bool cmp(node x, node y)
{
return dis[x.x] + dis[x.y] + x.z < dis[y.x] + dis[y.y] + y.z;
} inline int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} int main()
{
int i, j, x, y, z, u, v;
n = read();
m = read();
memset(head, -1, sizeof(head));
for(i = 1; i <= m; i++)
{
x = read();
y = read();
z = read();
add(x, y, z);
add(y, x, z);
}
dijkstra();
memset(vis, 0, sizeof(vis));
dfs(1, 1);
for(u = 1; u <= n; u++)
for(i = head[u]; i ^ -1; i = next[i])
{
if(vis[i]) continue;
v = to[i];
vis[i] = vis[i ^ 1] = 1;
p[++tot] = node(u, v, val[i]);
}
sort(p + 1, p + tot + 1, cmp);
memset(ans, 127, sizeof(ans));
for(i = 1; i <= n; i++) f[i] = i;
for(i = 1; i <= tot; i++)
{
x = p[i].x;
y = p[i].y;
g.clear();
while(x ^ y)
{
if(deep[x] < deep[y]) x ^= y ^= x ^= y;
if(ans[x] <= 1e9) x = find(x);
else
{
ans[x] = dis[p[i].x] + dis[p[i].y] + p[i].z - dis[x];
g.push_back(x);
x = pre[x];
}
}
for(j = 0; j < g.size(); j++) f[g[j]] = find(x);
}
for(i = 2; i <= n; i++)
printf("%d\n", ans[i] <= 1e9 ? ans[i] : -1);
return 0;
}

  

[BZOJ1576] [Usaco2009 Jan]安全路经Travel(堆优化dijk + (并查集 || 树剖))的更多相关文章

  1. 【思维题 并查集 图论】bzoj1576: [Usaco2009 Jan]安全路经Travel

    有趣的思考题 Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第 ...

  2. BZOJ1576: [Usaco2009 Jan]安全路经Travel(树链剖分)

    Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...

  3. BZOJ1576 [Usaco2009 Jan]安全路经Travel

    首先用Dijkstra做出最短路生成树,设dis[p]为1到p点的最短路长度 对于一条不在生成树上的边u -> v,不妨设fa为u.v的lca 则一fa到v的路径上的任意点x都可以由u达到,走的 ...

  4. BZOJ1576: [Usaco2009 Jan]安全路经Travel(最短路 并查集)

    题意 给你一张无向图,保证从1号点到每个点的最短路唯一.对于每个点求出删掉号点到它的最短路上的最后一条边(就是这条路径上与他自己相连的那条边)后1号点到它的最短路的长度 Sol emmm,考场上想了个 ...

  5. 【BZOJ1576】[Usaco2009 Jan]安全路经Travel 最短路+并查集

    [BZOJ1576][Usaco2009 Jan]安全路经Travel Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, ...

  6. bzoj 1576: [Usaco2009 Jan]安全路经Travel 树链剖分

    1576: [Usaco2009 Jan]安全路经Travel Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 665  Solved: 227[Sub ...

  7. bzoj 1576: [Usaco2009 Jan]安全路经Travel——并查集+dijkstra

    Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...

  8. BZOJ_1576_[Usaco2009 Jan]安全路经Travel&&BZOJ_3694_最短路_树链剖分+线段树

    Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...

  9. [Usaco2009 Jan]安全路经Travel BZOJ1576 Dijkstra+树链剖分+线段树

    分析: Dijkstra求最短路树,在最短路树上进行操作,详情可见上一篇博客:http://www.cnblogs.com/Winniechen/p/9042937.html 我觉得这个东西不压行写出 ...

随机推荐

  1. 电脑公司最新稳定win7系统下载

    系统来自系统妈:http://www.xitongma.com 系统概述 电脑公司ghost win7 x86(32位)万能装机版集成的软件符合电脑公司及电脑城装机绝大多数人要求及喜好,既大众,又时尚 ...

  2. Bootstrap 入门到精通

    介绍 Bootstrap,来自 Twitter,是目前最受欢迎的前端框架.Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的,它简洁灵活,使得 Web 开发更加快捷.Bootstr ...

  3. MATLAB批量修改图片名称

    申明:转载请注明出处. 设在“D:\UserDesktop\pic\”目录下有很多张格式为jpg照片,命名不规则,如图. 现在用MATLAB批量修改所有图片的命名格式,改为1.jpg,2.jpg,.. ...

  4. (转)MyBatis框架的学习(七)——MyBatis逆向工程自动生成代码

    http://blog.csdn.net/yerenyuan_pku/article/details/71909325 什么是逆向工程 MyBatis的一个主要的特点就是需要程序员自己编写sql,那么 ...

  5. pathForResource获取资源为nil的原因

    利用NSbundle获取 资源文件的时候,如果是自己添加的文件,获取的时候纵使返回nil的解决办法.原因是因为该文件没有添加到资源文件中,只要在添加文件的时候选择添加到 Create Folder R ...

  6. 树形dp——覆盖所有边的最少费用(Protecting Zonk)

    一.问题描述 有一个n(n<=10000)个节点的无根树.有两种装置A,B,每种都有无限多个. 1.在某个节点X使用A装置需要C1(C1<=1000)的花费,并且此时与节点X相连的边都被覆 ...

  7. 【Codeforces Rockethon 2014】Solutions

    转载请注明出处:http://www.cnblogs.com/Delostik/p/3553114.html 目前已有[A B C D E] 例行吐槽:趴桌子上睡着了 [A. Genetic Engi ...

  8. Java——舞动的排序

    一.冒泡排序: http://v.youku.com/v_show/id_XMzMyOTAyMzQ0.html //冒泡排序 public class Bubbling { public static ...

  9. clover如何使用UEFI引导和EFI驱动选择

    EFI分区实际上是一个FAT格式的分区,不一定要是第一个分区,GPT磁盘下任何一个FAT文件格式的分区都可以用来放EFI引导文件.主板UEFI先默认引导你所设置的第一优先启动分区下的\EFI\boot ...

  10. visibilitychange 标签可见性

    var pageVisibility = document.visibilityState;// 监听 visibility change 事件document.addEventListener('v ...