选带傅里叶变换的原理大家能够看书。大致的步骤为

  1. 移频 (将选带的中心频率移动到零频)
  2. 数字低通滤波器  (防止频率混叠)
  3. 又一次採样  (将採样的数据再次间隔採样,间隔的数据取决于分析的带宽,就是放大倍数)
  4. 复FFT (因为经过了移频,所以数据不是实数了)
  5. 频率调整 (将负半轴的频率成分移到正半轴)

程序例如以下:

function [f, y] = zfft(x, fi, fa, fs)
% x为採集的数据
% fi为分析的起始频率
% fa为分析的截止频率
% fs为採集数据的採样频率
% f为输出的频率序列
% y为输出的幅值序列(实数) f0 = (fi + fa) / 2; %中心频率
N = length(x); %数据长度 r = 0:N-1;
b = 2*pi*f0.*r ./ fs;
x1 = x .* exp(-1j .* b); %移频 bw = fa - fi; B = fir1(32, bw / fs); %滤波 截止频率为0.5bw
x2 = filter(B, 1, x1); c = x2(1:floor(fs/bw):N); %又一次採样
N1 = length(c);
f = linspace(fi, fa, N1);
y = abs(fft(c)) ./ N1 * 2;
y = circshift(y, [0, floor(N1/2)]); %将负半轴的幅值移过来
end

应用实例:

fs = 2048;
T = 100;
t = 0:1/fs:T;
x = 30 * cos(2*pi*110.*t) + 30 * cos(2*pi*111.45.*t) + 25*cos(2*pi*112.3*t) + 48*cos(2*pi*113.8.*t)+50*cos(2*pi*114.5.*t);
[f, y] = zfft(x, 109, 115, fs);
plot(f, y);

效果:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

选带傅里叶变换(zoom-fft)的更多相关文章

  1. 【数学】快速傅里叶变换(FFT)

    快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通 ...

  2. 【知识总结】快速傅里叶变换(FFT)

    这可能是我第五次学FFT了--菜哭qwq 先给出一些个人认为非常优秀的参考资料: 一小时学会快速傅里叶变换(Fast Fourier Transform) - 知乎 小学生都能看懂的FFT!!! - ...

  3. 快速傅里叶变换(FFT)略解

    前言 如果我们能用一种时间上比 \(O(n^2)\) 更优秀的方法来计算大整数(函数)的乘法,那就好了.快速傅里叶变换(FFT) 可以帮我们在 \(O(n\log n)\) 的时间内解决问题. 函数乘 ...

  4. OI中的快速傅里叶变换(FFT)

    快速傅里叶变换(FFT)                                                                               ---- LLpp ...

  5. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  6. 快速傅里叶变换(FFT)

    一.FFT的意义 DFT虽然实现了FT的计算机计算,但是计算量大,不适合实时的数字信号处理.FFT算法的出现,使DFT的计算效率更高,速度更快. 二.FFT与DFT的关系 从FT到DFT经过了数字角频 ...

  7. 快速傅里叶变换(FFT)算法【详解】

    快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...

  8. 【Learning】多项式乘法与快速傅里叶变换(FFT)

    简介: FFT主要运用于快速卷积,其中一个例子就是如何将两个多项式相乘,或者高精度乘高精度的操作. 显然暴搞是$O(n^2)$的复杂度,然而FFT可以将其将为$O(n lg n)$. 这看起来十分玄学 ...

  9. 快速傅里叶变换(FFT)时间复杂度

    图:信号在时域上和频域上的直观表示 1. 计算一维离散傅里叶变换(DFT)公式如下: 其中,N表示数据长度.由上式可知,DFT的时间复杂度是O(N*N) 2. 一维FFT的时间复杂度为O(N*logN ...

随机推荐

  1. 【转】DLL中导出函数的两种方式(dllexport与.def文件)

    DLL中导出函数的两种方式(dllexport与.def文件) DLL中导出函数的声明有两种方式: 一种方式是:在函数声明中加上__declspec(dllexport):另外一种方式是:采用模块定义 ...

  2. docker guide

    centos docker community version install: yum -y install docker # install docker systemctl start dock ...

  3. spring注解开发-声明式事务(源码)

    1. 环境搭建与测试 1)导入相关依赖 数据源.数据库驱动.Spring-jdbc模块 <dependency> <groupId>org.springframework< ...

  4. POJ-3278 抓住这头牛

    广搜解决. 广搜搜出最短路,直接输出返回就行了. 每个点只搜一次,而且界限进行一次判断. else 语句里面不要用if    else if,这样的话就直走一条路了. #include <ios ...

  5. [CF] 37 E. Trial for Chief

    如果固定了一个中心,那么只需要考虑从它开始最远染到的那些点究竟染了几次. 上下左右不同的点连1边,相同的连0边,跑单源最短路就可以啦. lyd讲的是统计到最远黑点+1的最小值,但是#58数据全是白点, ...

  6. tornado框架基础07-sqlalchemy查询

    01 查询结果 上节使用query从数据库中查询到了结果,但是query返回的对象是直接可用的吗? 首先导入模块 from connect import session from user_modul ...

  7. JQuery中如何查找某种类型的所有元素&选择器

    更多的是,有关于选择器的内容. 背景:查找某控件中所有的input元素,代码如下: $("#div1").find("input").each(function ...

  8. iptables工具

    http://www.linuxidc.com/Linux/2012-12/77074.htm iptables 指令 语法: iptables [-t table] command [match]  ...

  9. 大数据学习——有两个海量日志文件存储在hdfs

    有两个海量日志文件存储在hdfs上, 其中登陆日志格式:user,ip,time,oper(枚举值:1为上线,2为下线):访问之日格式为:ip,time,url,假设登陆日志中上下线信息完整,切同一上 ...

  10. [转]ORA-38500: USING CURRENT LOGFILE option not available without stand

    标签: oracle 10g 数据库 ora-38500 it 分类: IT author:skate time :2009/08/03 在dataguard启用实时恢复的时候,报如下错误: ORA- ...