Python——sklearn提供的自带的数据集
sklearn提供的自带的数据集
sklearn 的数据集有好多个种
- 自带的小数据集(packaged dataset):sklearn.datasets.load_<name>
- 可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_<name>
- 计算机生成的数据集(Generated Dataset):sklearn.datasets.make_<name>
- svmlight/libsvm格式的数据集:sklearn.datasets.load_svmlight_file(...)
- 从买了data.org在线下载获取的数据集:sklearn.datasets.fetch_mldata(...)
①自带的数据集
其中的自带的小的数据集为:sklearn.datasets.load_<name>

这些数据集都可以在官网上查到,以鸢尾花为例,可以在官网上找到demo,http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html

from sklearn.datasets import load_iris
#加载数据集
iris=load_iris()
iris.keys() #dict_keys(['target', 'DESCR', 'data', 'target_names', 'feature_names'])
#数据的条数和维数
n_samples,n_features=iris.data.shape
print("Number of sample:",n_samples) #Number of sample: 150
print("Number of feature",n_features) #Number of feature 4
#第一个样例
print(iris.data[0]) #[ 5.1 3.5 1.4 0.2]
print(iris.data.shape) #(150, 4)
print(iris.target.shape) #(150,)
print(iris.target)
""" [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2] """
import numpy as np
print(iris.target_names) #['setosa' 'versicolor' 'virginica']
np.bincount(iris.target) #[50 50 50] import matplotlib.pyplot as plt
#以第3个索引为划分依据,x_index的值可以为0,1,2,3
x_index=3
color=['blue','red','green']
for label,color in zip(range(len(iris.target_names)),color):
plt.hist(iris.data[iris.target==label,x_index],label=iris.target_names[label],color=color) plt.xlabel(iris.feature_names[x_index])
plt.legend(loc="Upper right")
plt.show() #画散点图,第一维的数据作为x轴和第二维的数据作为y轴
x_index=0
y_index=1
colors=['blue','red','green']
for label,color in zip(range(len(iris.target_names)),colors):
plt.scatter(iris.data[iris.target==label,x_index],
iris.data[iris.target==label,y_index],
label=iris.target_names[label],
c=color)
plt.xlabel(iris.feature_names[x_index])
plt.ylabel(iris.feature_names[y_index])
plt.legend(loc='upper left')
plt.show()


手写数字数据集load_digits():用于多分类任务的数据集
from sklearn.datasets import load_digits
digits=load_digits()
print(digits.data.shape)
import matplotlib.pyplot as plt
plt.gray()
plt.matshow(digits.images[0])
plt.show() from sklearn.datasets import load_digits
digits=load_digits()
digits.keys()
n_samples,n_features=digits.data.shape
print((n_samples,n_features)) print(digits.data.shape)
print(digits.images.shape) import numpy as np
print(np.all(digits.images.reshape((1797,64))==digits.data)) fig=plt.figure(figsize=(6,6))
fig.subplots_adjust(left=0,right=1,bottom=0,top=1,hspace=0.05,wspace=0.05)
#绘制数字:每张图像8*8像素点
for i in range(64):
ax=fig.add_subplot(8,8,i+1,xticks=[],yticks=[])
ax.imshow(digits.images[i],cmap=plt.cm.binary,interpolation='nearest')
#用目标值标记图像
ax.text(0,7,str(digits.target[i]))
plt.show()


乳腺癌数据集load-barest-cancer():简单经典的用于二分类任务的数据集
糖尿病数据集:load-diabetes():经典的用于回归任务的数据集,值得注意的是,这10个特征中的每个特征都已经被处理成0均值,方差归一化的特征值
波士顿房价数据集:load-boston():经典的用于回归任务的数据集
体能训练数据集:load-linnerud():经典的用于多变量回归任务的数据集,其内部包含两个小数据集:Excise是对3个训练变量的20次观测(体重,腰围,脉搏),physiological是对3个生理学变量的20次观测(引体向上,仰卧起坐,立定跳远)
svmlight/libsvm的每一行样本的存放格式:
<label><feature-id>:<feature-value> <feature-id>:<feature-value> ....
这种格式比较适合用来存放稀疏数据,在sklearn中,用scipy sparse CSR矩阵来存放X,用numpy数组来存放Y
from sklearn.datasets import load_svmlight_file
x_train,y_train=load_svmlight_file("/path/to/train_dataset.txt","")#如果要加在多个数据的时候,可以用逗号隔开
②生成数据集
生成数据集:可以用来分类任务,可以用来回归任务,可以用来聚类任务,用于流形学习的,用于因子分解任务的
用于分类任务和聚类任务的:这些函数产生样本特征向量矩阵以及对应的类别标签集合
make_blobs:多类单标签数据集,为每个类分配一个或多个正太分布的点集
make_classification:多类单标签数据集,为每个类分配一个或多个正太分布的点集,提供了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等
make_gaussian-quantiles:将一个单高斯分布的点集划分为两个数量均等的点集,作为两类
make_hastie-10-2:产生一个相似的二元分类数据集,有10个维度
make_circle和make_moom产生二维二元分类数据集来测试某些算法的性能,可以为数据集添加噪声,可以为二元分类器产生一些球形判决界面的数据
#生成多类单标签数据集
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
center=[[1,1],[-1,-1],[1,-1]]
cluster_std=0.3
X,labels=make_blobs(n_samples=200,centers=center,n_features=2,
cluster_std=cluster_std,random_state=0)
print('X.shape',X.shape)
print("labels",set(labels)) unique_lables=set(labels)
colors=plt.cm.Spectral(np.linspace(0,1,len(unique_lables)))
for k,col in zip(unique_lables,colors):
x_k=X[labels==k]
plt.plot(x_k[:,0],x_k[:,1],'o',markerfacecolor=col,markeredgecolor="k",
markersize=14)
plt.title('data by make_blob()')
plt.show() #生成用于分类的数据集
from sklearn.datasets.samples_generator import make_classification
X,labels=make_classification(n_samples=200,n_features=2,n_redundant=0,n_informative=2,
random_state=1,n_clusters_per_class=2)
rng=np.random.RandomState(2)
X+=2*rng.uniform(size=X.shape) unique_lables=set(labels)
colors=plt.cm.Spectral(np.linspace(0,1,len(unique_lables)))
for k,col in zip(unique_lables,colors):
x_k=X[labels==k]
plt.plot(x_k[:,0],x_k[:,1],'o',markerfacecolor=col,markeredgecolor="k",
markersize=14)
plt.title('data by make_classification()')
plt.show() #生成球形判决界面的数据
from sklearn.datasets.samples_generator import make_circles
X,labels=make_circles(n_samples=200,noise=0.2,factor=0.2,random_state=1)
print("X.shape:",X.shape)
print("labels:",set(labels)) unique_lables=set(labels)
colors=plt.cm.Spectral(np.linspace(0,1,len(unique_lables)))
for k,col in zip(unique_lables,colors):
x_k=X[labels==k]
plt.plot(x_k[:,0],x_k[:,1],'o',markerfacecolor=col,markeredgecolor="k",
markersize=14)
plt.title('data by make_moons()')
plt.show()



Python——sklearn提供的自带的数据集的更多相关文章
- sklearn提供的自带的数据集
sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在线下载的数据集(Downloaded ...
- sklearn提供的自带数据集
sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在线下载的数据集(Downloaded ...
- 『Sklearn』框架自带数据集接口
自带数据集类型如下: # 自带小型数据集# sklearn.datasets.load_<name># 在线下载数据集# sklearn.datasets.fetch_<name&g ...
- Python: sklearn库——数据预处理
Python: sklearn库 —— 数据预处理 数据集转换之预处理数据: 将输入的数据转化成机器学习算法可以使用的数据.包含特征提取和标准化. 原因:数据集的标准化(服从均值为 ...
- 用python+sklearn(机器学习)实现天气预报数据 模型和使用
用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型 ...
- 用python+sklearn(机器学习)实现天气预报数据 数据
用python+sklearn机器学习实现天气预报 数据 项目地址 系列教程 勘误表 0.前言 1.爬虫 a.确认要被爬取的网页网址 b.爬虫部分 c.网页内容匹配取出部分 d.写入csv文件格式化 ...
- 用python+sklearn(机器学习)实现天气预报 准备
用python+sklearn机器学习实现天气预报 准备 项目地址 系列教程 0.流程介绍 1. 环境搭建 a.python b.涉及到的机器学习相关库 sklearn panda seaborn j ...
- python+sklearn+kaggle机器学习
python+sklearn+kaggle机器学习 系列教程 0.kaggle 1. 初级线性回归模型机器学习过程 a. 提取数据 b.数据预处理 c.训练模型 d.根据数据预测 e.验证 今天是10 ...
- C#调用Oracle带输出数据集的存储过程
1.创建一个带输出数据集的Oracle存储过程 create or replace procedure PRO_test(in_top in number,cur_out out sys_refcur ...
随机推荐
- apache thinkphp5 强制https://访问
根目录下,.htaccess文件 <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews RewriteEngine On ...
- 第六章、Cookies和Session
目录 第六章.Cookies和Session 一.来源 二.cookie工作原理 工作原理: 三.session的工作原理 工作原理: 四.如何操作cookie 服务端常见的cookie操作 五.案例 ...
- DB2 alter 新增/删除/修改列
SQL语句 增加列.修改列.删除列 1 添加字段 语法 : alter table 表名称 add 字段名称 类型 demo: alter table tableName add columnName ...
- Django框架orm
一.django目录 二.登录注册 三.三件套 四.orm简介 五.基于orm的用户登录 一.django目录 -settings -urls -views -强调:setting中的'django. ...
- web开发:javascript动画
一.鼠标事件 二.js盒模型 三.鼠标拖拽 四.键盘事件 五.其他时间应用 六.定时器 七.定时器案例 八.随机数 一.鼠标事件 <!DOCTYPE html> <html> ...
- java——maven依赖版本冲突
博客:maven依赖jar包时版本冲突的解决
- 关于WebAssembly
一.WebAssembly是什么? WebAssembly(缩写为Wasm)是基于堆栈的虚拟机的二进制指令格式.Wasm被设计为一个可移植的目标,用于编译C / C ++ / Rust等高级语言,支持 ...
- CSS世界中那些说起来很冷的知识
CSS世界中那些说起来很冷的知识 最近读了张鑫旭的新书<CSS世界>收获了不少对CSS的深度理解 也正值个人在公司内部进行部分章节的内容分享,于是顺带着直接把我即将分享的内容先给大家过过目 ...
- GET /static/plugins/bootstrap/css/bootstrap.css HTTP/1.1" 404 1718
引用的Bootstrap一直不出来,页面中的静态资源无法加载, 报这个错的原因,是因为配置setting时候没有配置好. 后面在setting里面添加下面这段就好了 STATICFILES_DIRS ...
- 用JS将毫秒转化成天时分秒的时间格式
function formatDuring(mss) { var days = parseInt(mss / (1000 * 60 * 60 * 24)); var hours = parseInt( ...