如果没有组合效益的存在 我们直接每个点两部分的最大值即可

换成网络流模型来看 即把S点看作是A田 把T点看作是B田 每种作物看作一个点 分别连边(S,i,A[i]) (i,T,B[i])

最后图中所有边权和减去最大流即为答案.这个很好理解,因为最小割=最大流,一种作物只能选择A,B里的一个

所以对于每个点必要删去一条边,删去的边相当于我们不要的选项 剩下的和S,T相连的边相当于我们的选择 此时删去的肯定是最小的边.

接下来我们要处理组合效应的问题.

每个组合效应有三种选择:A/B/无

这样对于每个组合只建一个点很难满足要求 则我们把每个组合拆成A,B两个点  A点和S建边(S,A,C1[i])  B点和T建边(B,T,C2[i]) 表示选择A,B能得到的贡献.

再对于组合里的每个数都连边(A,K[i],INF) (K[i],B,INF) 这样图中除边权为INF的边的边权减去跑出来的最大流即为答案.

为什么这样跑出来即是我们选择要删去的选项?

因为最小割不可能会割INF的边

每个组合效应的A点 他旗下的每个点要都选A他才能产生贡献,如果有一个选了B则会产生增广路径,那么就必须要割掉(S,A,C1[i])

每个组合效应的B点 他旗下的每个点要都选B他才能产生贡献,如果有一个选了A则同样会产生增广路径,必须要割掉(B,T,C2[i])

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int N=;
const int M=;
const int inf=0x3f3f3f3f;
int head[N],edge[M],to[M],next[M],cnt=;
void add(int u,int v,int w)
{
to[++cnt]=v;next[cnt]=head[u];edge[cnt]=w;head[u]=cnt;
to[++cnt]=u;next[cnt]=head[v];edge[cnt]=;head[v]=cnt;
}
int dep[N],used[N],pre[N],tot,s[N],ans,m,n,sum;
queue <int > q;
bool bfs()
{
while(!q.empty()) q.pop();
q.push();
memset(dep,,sizeof(dep));
dep[]=;
while(!q.empty()&&q.front()!=n+)
{
int u=q.front();
q.pop();
for(int i=head[u];i;i=next[i])
{
int v=to[i],w=edge[i];
if(!dep[v]&&w)
{
dep[v]=dep[u]+;
q.push(v);
}
}
}
return !q.empty();
}
int main()
{
scanf("%d",&n);
int w,v,k,c1,c2;
for(int i=;i<=n;i++)
{
scanf("%d",&w);
sum+=w;
add(,i,w);
}
for(int i=;i<=n;i++)
{
scanf("%d",&w);
sum+=w;
add(i,n+,w);
}
scanf("%d",&m);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&k,&c1,&c2);
add(,i+n+,c1);sum+=c1;
add(i+n+m+,n+,c2);sum+=c2;
for(int j=;j<=k;j++)
{
scanf("%d",&v);
add(i+n+,v,inf);
add(v,i+n+m+,inf);
}
}
while(bfs())
{
memset(used,,sizeof(used));
s[++tot]=;
while(tot)
{
int u=s[tot];
if(u==n+)
{
int mi=inf,id;
for(int i=tot;i>;i--)
if(mi>=edge[pre[s[i]]])
{
mi=edge[pre[s[i]]];
id=i;
}
ans+=mi;
for(int i=tot;i>;i--)
{
edge[pre[s[i]]]-=mi;
edge[pre[s[i]]^]+=mi;
}
tot=id-;
used[n+]=;
}
else
{
for(int i=head[u];i;i=next[i])
{
int v=to[i],w=edge[i];
if(!used[v]&&dep[v]==dep[u]+&&w)
{
used[v]=;
s[++tot]=v;
pre[v]=i;
break;
}
}
if(u==s[tot]) tot--;
}
}
}
printf("%d\n",sum-ans);
return ;
}

P1361 小M的作物 最小割理解的更多相关文章

  1. 洛谷 - P1361 - 小M的作物 - 最小割 - 最大权闭合子图

    第一次做最小割,不是很理解. https://www.luogu.org/problemnew/show/P1361 要把东西分进两类里,好像可以应用最小割的模板,其中一类A作为源点,另一类B作为汇点 ...

  2. [P1361] 小M的作物 - 最小割

    没想到今天早上的第一题网络流就血了这么多发 从经典的二选一问题上魔改 仍然考虑最小割 #include <bits/stdc++.h> using namespace std; #defi ...

  3. BZOJ 3438: 小M的作物( 最小割 )

    orz出题人云神... 放上官方题解... 转成最小割然后建图跑最大流就行了... ---------------------------------------------------------- ...

  4. BZOJ3438小M的作物——最小割

    题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可 ...

  5. 【BZOJ3438】小M的作物 最小割

    [BZOJ3438]小M的作物 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1. ...

  6. 3438: 小M的作物[最小割]

    3438: 小M的作物 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1073  Solved: 465[Submit][Status][Discus ...

  7. 【BZOJ-3438】小M的作物 最小割 + 最大权闭合图

    3438: 小M的作物 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 825  Solved: 368[Submit][Status][Discuss ...

  8. 小M的作物 最小割最大流

    题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号). 现在,第i种作物种植在A中种植可 ...

  9. 洛谷 P1361 小M的作物 解题报告

    P1361 小M的作物 题目描述 小M在MC里开辟了两块巨大的耕地\(A\)和\(B\)(你可以认为容量是无穷),现在,小\(P\)有\(n\)中作物的种子,每种作物的种子有1个(就是可以种一棵作物) ...

随机推荐

  1. Map对象,Set对象使用(2)

    今天重点见一下Set Set 在我印象里它主要就是去重,Set 是一个值的集合,这个集合中所有的值仅出现一次 Set 属性size:和Map的size一样,返回成员的总数 Set的方法: Set.pr ...

  2. spring boot中Elasticsearch默认版本问题

    这是今天遇上的一个问题. 添加的依赖是7.2.0版本的Elasticsearch,但是其中有两项是6.4.3的,导致我从其他地方移植过来的代码报错. 据大神说,这是因为spring boot中默认的E ...

  3. [知乎]这可能是最全面的龙芯3A3000处理器评测

    这可能是最全面的龙芯3A3000处理器评测 第一千零一个人   已关注 蓬岸 Dr.Quest . https://zhuanlan.zhihu.com/p/50716952 这里面链接很全. 立党 ...

  4. 【Python】【demo实验35】【基础实验】【排序】【选择法排序】

    原题: 使用选择法对10个数字排序: 即取10个数中最小的放在第一个位置,再取剩下9个中最小的放在第二个位置... 我的源码: #!/usr/bin/python # encoding=utf-8 # ...

  5. 使用dockerfile 搭建django系统(nginx+redis+mongodb+celery)

    背景 有需求需要对django系统进行docker化,以达到灵活部署和容灾.该系统基于django 2.2版本开发,数据库采用mongodb,服务器使用nginx,因系统有部分异步任务,异步任务则采用 ...

  6. 如何使用RedisTemplate访问Redis数据结构之list

    Redis的List数据结构 这边我们把RedisTemplate序列化方式改回之前的 Jackson2JsonRedisSerializer<Object> jackson2JsonRe ...

  7. shell实践--简单抓取网页内容

    #!/bin/bash base_path="https://testerhome.com/"user_path="ycwdaaaa/topics?page=" ...

  8. 坦克大战--Java类型

    写在前面       Java编译器下载教程(真的良心):https://blog.csdn.net/Haidaiya/article/details/81230636 本项目为本人独自制作,请各位尊 ...

  9. composer在windows下安装并且设置全局变量

    Composer是 PHP 用来管理依赖(dependency)关系的工具.你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件. 1丶使用安 ...

  10. Linux(CentOS7)系统中部署Django web框架

    1. 概述 部署django和vue架在逻辑上可以分为web层与数据库层:web前端通过实现了WSGI协议的模块对python代码进行解析,而python代码中则通过特定于数据库的操作接口对数据库进行 ...