GitHubhttps://github.com/pengcao/chinese_ocr https://github.com/xiaofengShi/CHINESE-OCR

|-angle 基于VGG分类模型的文字方向检测预测|-bash 环境安装|----setup-python3.sh 安装python3环境|----setup-python3-cpu.sh 安装CPU环境|----setup-python3-gpu.sh 安装CPU环境|-crnn |-ctpn 基于CTPN模型的文本区域检测模型训练及预测|-model|----modelAngle.h5 文字方向检测VGG模型|----my_model_keras.h5 文本识别CRNN模型|-ocr 基于CRNN的文本识别模型预测|-result 预测图片|-test 测试图片|-train 基于CRNN的文本识别模型训练

环境要求

python3.-cpu/gpugraphvizpydot(py)torchtorchvision
  • 卸载旧版本的pytorch和torchvision
pip uninstall torchvision
pip uninstall  torch
  • 安装pytorch

1)Anaconda搜索torch

2)选择标记处点开

3)Anaconda Prompt - conda install -c peterjc123 pytorch

  • 安装torchvision
conda install torchvision -c pytorch # TorchVision requires PyTorch 1.1 or newer
离线安装pytorch1).whl安装
从pytorch官网https://pytorch.org/previous-versions/下载合适版本torch及torchvision的whl
# 直接对whl文件进行编译即可
pip install torch--cp36-cp36m-linux_x86_64.whl
pip install torchvision--py2.py3-none-any.whl

2).tar.gz安装

下载对应版本的.tar.gz文件,并解压
# 进入解压目录,执行安装命令
python setup.py install
离线安装GCC(Tensorflow部分第三方模块需要GCC进行编译,所以在安装第三方的依赖包之前先安装GCC)
https://pkgs.org/download/gcc下载gcc-4.8.5-28.el7_5.1.x86_64.rpm版本,并且在require部分下载所需要的rpm文件(根据报错缺失的rpm下载)
rpm -ivh gcc-4.8.5-28.el7_5.1.x86_64.rpm
# 如果已经有旧的版本会报conflicts with错误
rpm -ivh gcc-4.8.5-28.el7_5.1.x86_64.rpm --force

模型

  • 文本方向检测网络 - Classify(vgg16)
  • 文本区域检测网络 - CTPN(CNN+RNN) - 支持CPU、GPU环境,一键部署 - 文本检测训练Github:https://github.com/eragonruan/text-detection-ctpn
  • EndToEnd文本识别网络 - CRNN(CNN+GRU/LSTM+CTC)

文本方向检测

训练:基于图像分类模型 - VGG16分类模型,训练0、90、180、270度检测的分类模型(angle/predict.py),训练图片8000张,准确率88.23%

模型https://pan.baidu.com/s/1Sqbnoeh1lCMmtp64XBaK9w(n2v4)

文本区域检测

基于深度学习的文本区域检测方法http://xiaofengshi.com/2019/01/23/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0-TextDetection/

CTPN(CNN+RNN)网路结构

CTPN是一种基于目标检测方法的文本检测模型,在repo的CTPN中anchor的设置为固定宽度,高度不同,相关代码如下:

def generate_anchors(base_size=, ratios=[, ],
                     scales= ** np.arange(, )):
    heights = [, , , , , , , , , ]
    widths = []
    sizes = []
    for h in heights:
        for w in widths:
            sizes.append((h, w))
    return generate_basic_anchors(sizes)

基于这种设置,CTPN只能检测水平方向的文本,如果想要CTPN可以支持垂直文本检测,可以在anchor生成函数上进行修改

对CTPN进行训练

端到端(EndToEnd)文本识别

OCR识别采用GRU+CTC[CRNN(CNN+GRU/LSTM+CTC)]端到端识别技术,实现不分隔识别不定长文字

CTC - CTC算法原理

CTC是一种解码机制,在使用CTPN提取到待检测文本行之后,需要识别提取到的区域内的文本内容,目前广泛存在两种解码机制。

  • 一种是Seq2Seq机制,输入的是图像,经过卷积编码之后再使用RNN解码,为了提高识别的准确率,一般会加入Attention机制;
  • 另一种就是CTC解码机制,但是对于CTC解码要满足一个前提,那就是输入序列的长度不小于输出序列的长度。CTC主要用于序列解码,不需要对序列中的每个元素进行标记,只需要知道输入序列对应的整个Label是什么即可,针对OCR项目,也就是输入一张图像上面写着“欢迎来到中国”这几个字,只需要是这几个字,而没必要知道这几个字在输入图像中所在的具体位置,实际上如果知道每个字所在的位置,就是单字符识别了,的确会降低任务的复杂多,但是现实中我们没有这么多标记号位置的数据,这个时候CTC就显得很重要了。

对CRNN进行训练

  • keras版本:./train/keras_train/train_batch.py(model_path-指向预训练权重位置,MODEL_PATH-指向模型训练保存的位置)
  • pythorch版本:./train/pytorch-train/crnn_main.py
parser.add_argument(
    '--crnn',
    help="path to crnn (to continue training)",
    default=预训练权重的路径)
parser.add_argument(
    '--experiment',
    help='Where to store samples and models',
    default=定义的模型训练的权重保存位置)

模型

keras模型预训练权重:https://pan.baidu.com/s/14cTCedz1ESnj0mM9ISm__w(1kb9)

pytorch预训练权重:https://pan.baidu.com/s/1kAXKudJLqJbEKfGcJUMVtw(9six)

预测测试

运行predict.predict(demo).py:写入测试图片的路径即可

如果想要显示CTPN的结果,修改文件./ctpn/ctpn/other.py的draw_boxes函数的最后部分,cv2.inwrite('dest_path',img),如此可以得到CTPN检测的文字区域框以及图像的OCR识别结果

使用Python基于VGG/CTPN/CRNN的自然场景文字方向检测/区域检测/不定长OCR识别的更多相关文章

  1. 【OCR技术系列之八】端到端不定长文本识别CRNN代码实现

    CRNN是OCR领域非常经典且被广泛使用的识别算法,其理论基础可以参考我上一篇文章,本文将着重讲解CRNN代码实现过程以及识别效果. 数据处理 利用图像处理技术我们手工大批量生成文字图像,一共360万 ...

  2. OpenCV_contrib里的Text(自然场景图像中的文本检测与识别)

    平台:win10 x64 +VS 2015专业版 +opencv-3.x.+CMake 待解决!!!Issue说明:最近做一些字符识别的事情,想试一下opencv_contrib里的Text(自然场景 ...

  3. 【CV知识学习】【转】beyond Bags of features for rec scenen categories。基于词袋模型改进的自然场景识别方法

    原博文地址:http://www.cnblogs.com/nobadfish/articles/5244637.html 原论文名叫Byeond bags of features:Spatial Py ...

  4. 【OCR技术系列之五】自然场景文本检测技术综述(CTPN, SegLink, EAST)

    文字识别分为两个具体步骤:文字的检测和文字的识别,两者缺一不可,尤其是文字检测,是识别的前提条件,若文字都找不到,那何谈文字识别.今天我们首先来谈一下当今流行的文字检测技术有哪些. 文本检测不是一件简 ...

  5. python基于LeanCloud的短信验证

    python基于LeanCloud的短信验证 1. 获取LeanCloud的Id.Key 2. 安装Flask框架和Requests库 pip install flask pip install re ...

  6. Python基于共现提取《釜山行》人物关系

    Python基于共现提取<釜山行>人物关系 一.课程介绍 1. 内容简介 <釜山行>是一部丧尸灾难片,其人物少.关系简单,非常适合我们学习文本处理.这个项目将介绍共现在关系中的 ...

  7. Python 基于Python实现的ssh兼sftp客户端(上)

    基于Python实现的ssh兼sftp客户端   by:授客 QQ:1033553122 实现功能 实现ssh客户端兼ftp客户端:实现远程连接,执行linux命令,上传下载文件 测试环境 Win7 ...

  8. Python基于socket模块实现UDP通信功能示例

    Python基于socket模块实现UDP通信功能示例 本文实例讲述了Python基于socket模块实现UDP通信功能.分享给大家供大家参考,具体如下: 一 代码 1.接收端     import ...

  9. Python基于正则表达式实现文件内容替换的方法

    Python基于正则表达式实现文件内容替换的方法 本文实例讲述了Python基于正则表达式实现文件内容替换的方法.分享给大家供大家参考,具体如下: 最近因为有一个项目需要从普通的服务器移植到SAE,而 ...

随机推荐

  1. Linux Shell脚本,删除旧文件,保留最新的几个文件

    删除某一目录下文件,只保留最新的几个 #!/bin/bash #保留文件数 ReservedNum= FileDir=/home/dev/saas_test/testcases/report/html ...

  2. Linux-配置共享目录

    找到相关rpm包 运行以及错误解决** rpm -ivh tcp_wrappers-7.6-34.i386.rpm rpm -ivh portmap-4.0-54.i386.rpm rpm -ivh ...

  3. springMVC中的ModelAndView说明

    ModelAndView 类别就如其名称所示,是代表了Spring Web MVC程式中呈现画面时所使用Model资料物件与View资料物件,由于Java程式中一次只能返回一个物件,所以ModelAn ...

  4. truncate at 255 characters with xlsx files(OLEDB方式读取Excel丢失数据、字符串截断的原因和解决方法)

    The TypeGuessRows setting is supported by ACE. Note the version numbers in the key may change depend ...

  5. PHP 多条件查询(汽车表)

    主页面: <h1>汽车查询页面</h1> <br /> <?php include("./DBDA.class.php"); $db = ...

  6. 注意机制CBAM

    这是一种用于前馈卷积神经网络的简单而有效的注意模块. 给定一个中间特征图,我们的模块会沿着两个独立的维度(通道和空间)依次推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征修饰. 由于CBAM ...

  7. Python 中的type和object详解

    1.python中的类 Python2.x 中的类分为两种,一种是所有继承自object的新式类,另外一种是经典类classobj, 新式类的写法: class A(object): pass 经典类 ...

  8. 机器学习之K-Mean聚类算法

    知识点: # coding = utf-8 import numpy as np import pandas as pd from sklearn.cluster import KMeans &quo ...

  9. java线程锁之synchronized

    声明:该博客参考https://www.cnblogs.com/kaituorensheng/p/10079916.html,感谢哥们. 1.Sync.java package com.cn.comm ...

  10. python格式化字符串format的用法

    填充与对齐 填充常跟对齐一起使用 ^.<.>分别是居中.左对齐.右对齐,后面带宽度 :号后面带填充的字符,只能是一个字符,不指定的话默认是用空格填充 比如 In [15]: '{:> ...