P3373 【模板】线段树 2

    • 969通过
    • 3.9K提交
  • 题目提供者 HansBug
  • 标签 云端↑
  • 难度 提高+/省选-
  • 时空限制 1s / 128MB

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.将某区间每一个数乘上x

3.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k

操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k

操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果

输出格式:

输出包含若干行整数,即为所有操作3的结果。

输入输出样例

输入样例#1:

5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4
输出样例#1:

17
2

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^)

样例说明:

故输出应为17、2(40 mod 38=2)

思路:

  线段树模板

坑点:

  1)在更新加的时候要记得看一下爸爸的乘,必须先乘上再进行加

  2)一定要随时记得%p!!!

上代码=u=:

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#define LL long long
#define lson (l+r)<<1
#define rson (l+r)<<1|1
using namespace std; const int M = ;
LL n,m,sum,p;
LL ci[M]; struct C {
LL l,r;
LL add,multiply;
LL w;
}t[M*]; LL readin()
{
LL f=,x=;char ch=getchar();
while(ch<''||ch>'')
{if(ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>='')
{x=x*+ch-'',ch=getchar();}
return (LL)x*f;
} void builds(LL l,LL r,LL k)
{
t[k].l=l,t[k].r=r;
t[k].add=,t[k].multiply=;
if(l==r)
{
t[k].w=ci[l];
return;
}
LL mid=(l+r)>>;
builds(l,mid,lson),builds(mid+,r,rson);
t[k].w=(t[lson].w+t[rson].w)%p;
} void down(LL k)
{
LL l=t[k].l,r=t[k].r;
t[lson].add=(t[lson].add*t[k].multiply+t[k].add)%p;
t[rson].add=(t[rson].add*t[k].multiply+t[k].add)%p;
t[lson].multiply=(t[lson].multiply*t[k].multiply)%p;
t[rson].multiply=(t[rson].multiply*t[k].multiply)%p;
t[lson].w=(t[k].add*(t[lson].r-t[lson].l+)%p+t[lson].w*t[k].multiply%p)%p;
t[rson].w=(t[k].add*(t[rson].r-t[rson].l+)%p+t[rson].w*t[k].multiply%p)%p;
t[k].add=,t[k].multiply=;
} void Multiply(LL a,LL b,LL k,LL cheng)
{
if(a<=t[k].l && t[k].r<=b)
{
t[k].w=t[k].w*cheng%p;
t[k].add=t[k].add*cheng%p;
t[k].multiply=t[k].multiply*cheng%p;
return;
}
down(k);
LL l=t[k].l,r=t[k].r;
LL mid=(l+r)>>;
if(a<=mid) Multiply(a,b,lson,cheng);
if(b>mid) Multiply(a,b,rson,cheng);
t[k].w=(t[lson].w+t[rson].w)%p;
} void Add(LL a,LL b,LL k,LL jia)
{
if(a<=t[k].l && t[k].r<=b)
{
t[k].add=(t[k].add+jia)%p;
t[k].w=(t[k].w+jia*(t[k].r-t[k].l+))%p;
return;
}
down(k);
LL l=t[k].l,r=t[k].r;
LL mid=(l+r)>>;
if(a<=mid) Add(a,b,lson,jia);
if(b>mid) Add(a,b,rson,jia);
t[k].w=(t[lson].w+t[rson].w)%p;
} LL Sum(LL a,LL b,LL k)
{
if(a<=t[k].l && t[k].r<=b)
return t[k].w%p;
down(k);
LL ans=;
LL l=t[k].l,r=t[k].r;
LL mid=(l+r)>>;
if(a<=mid) ans=Sum(a,b,lson)%p;
if(b>mid) ans+=Sum(a,b,rson)%p;
return ans%p;
} int main()
{
n=readin(),m=readin(),p=readin();
for(int i=;i<=n;i++)
ci[i]=readin();
builds(,n,);
LL a,b,v;
for(int i=,q;i<=m;i++)
{
scanf("%d",&q);
switch(q)
{
case :
a=readin(),b=readin(),v=readin();
Multiply(a,b,,v%p);
break;
case :
a=readin(),b=readin(),v=readin();
Add(a,b,,v%p);
break;
default:
a=readin(),b=readin();
sum=Sum(a,b,)%p;
printf("%lld\n",sum);
}
}
return ;
}

luoguP3373 【模板】线段树 2的更多相关文章

  1. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  4. 【线段树】【P3372】模板-线段树

    百度百科 Definition&Solution 线段树是一种log级别的树形结构,可以处理区间修改以及区间查询问题.期望情况下,复杂度为O(nlogn). 核心思想见百度百科,线段树即将每个 ...

  5. 算法模板——线段树6(二维线段树:区域加法+区域求和)(求助phile)

    实现功能——对于一个N×M的方格,1:输入一个区域,将此区域全部值作加法:2:输入一个区域,求此区域全部值的和 其实和一维线段树同理,只是不知道为什么速度比想象的慢那么多,求解释...@acphile ...

  6. 【洛谷 p3373】模板-线段树 2(数据结构--线段树)

    题意:已知一个数列,你需要进行下面三种操作:1.将某区间每一个数加上x:2.将某区间每一个数乘上x:3.求出某区间每一个数的和. 解法:(唉 :-(,这题卡住我了......)对于加法和乘法的混合操作 ...

  7. 【洛谷 p3372】模板-线段树 1(数据结构--线段树)

    题目:已知一个数列,你需要进行下面两种操作:1.将某区间每一个数加上x:2.求出某区间每一个数的和. 解法:如题,模版题.需要加上 lazy 标记,也就是我的 upd.lazy 标记的思路就是对一个结 ...

  8. hdu 1754 I Hate It (线段树、单点更新)(PS:ios::sync_with_stdio(false)可以加快cin、cout的读取写出速度)

    I Hate ItTime Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  9. poj 3468 A Simple Problem with Integers 线段树 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=3468 线段树模板 要背下此模板 线段树 #include <iostream> #include <vector> ...

  10. 线段树 扫描线 L - Atlantis HDU - 1542 M - City Horizon POJ - 3277 N - Paint the Wall HDU - 1543

    学习博客推荐——线段树+扫描线(有关扫描线的理解) 我觉得要注意的几点 1 我的模板线段树的叶子节点存的都是 x[L]~x[L+1] 2 如果没有必要这个lazy 标志是可以不下传的 也就省了一个pu ...

随机推荐

  1. Linux命令-文件管理篇-cat

    1.cat 说明 cat 是一个文本文件查看和连接工具.查看一个文件的内容,用cat比较简单,就是cat 后面直接接文件名. 2.使用权限 所有使用者 <!-- more --> 3.ca ...

  2. date和time

    time和date两个函数在Lua中实现所有的时钟查询功能.函数time在没有参数时返回当前时钟的数值. t=os.date()print(t) 05/07/19 16:49:18 --------- ...

  3. opencv+ linux + cmake 生成 opencv静态库

    您可以省去如下步骤,直接下载我编译好的: http://download.csdn.net/detail/u011258240/9710331 一.编译opencv2.4  不带contrib 1. ...

  4. js判断浏览器内核如果是ie弹出提示非ie不进行任何操作

    如上做一个弹出框针对ie兼容 // 获取IE版本 function IEVersion() { // 取得浏览器的userAgent字符串 var userAgent = navigator.user ...

  5. ztree树id、pid转成children格式的(待整理完整)

    山铝菜单 因为菜单选用了bootstrap treeview ,而格式需要是children类似的格式 var nodes = [ {name: "父节点1", children: ...

  6. vue-cli3.x创建项目vue create hello-world

    在git中输入指令vue create hello-world,没反应,因为vue-cli的版本问题,必须3.x版本才能使用这个指令于是按照官网的提示升级vue vue-cli从2.x版本升级到3.x ...

  7. mint-ui下拉加载(项目实例)

    <template> <div class="share"> <div class="header"> <div cl ...

  8. docker一键搭建Nginx+PHP环境(含自动部署命令)

    文章的主要部分是一步一步的教程,文章的最后是我整理好的一键安装命令,自动下载并安装docker,构建镜像,启动容器集群(压缩包内注释覆盖范围达到80%) 大家可以看完教程亲自尝试下,也可以直接执行一键 ...

  9. Nginx返回大长度的JSON数据被截断

    1 添加Nginx参数,增加缓存字符串大小 head{ proxy_buffers 16 512k; //此处值代表nginx 设置 16个 512k 的块进行缓存,总共大小为16*512k prox ...

  10. stm32定时器计数功能

    stm32的外部时钟源模式2和外部时钟源模式1都可以用来实现计数功能,他们的区别是什么呢? 以上2种模式对应不同的管脚输入: 外部时钟源模式2 <-->TIMx_ETR 外部时钟源模式1  ...