BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)
分析
首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优.
那么在前iii个位置用了jjj次操作的话,a[i]a[i]a[i]就变成了a[i]+ja[i]+ja[i]+j.
可以列出DP方程式.设f[i][j]f[i][j]f[i][j]表示前iii个用了jjj次操作得到的LISLISLIS最长的长度. 有
f[i][j]=Max{ f[k][l]+1 }(l≤j 且 a[k]+l≤a[i]+j)f[i][j]=Max\{\ f[k][l]+1\ \}(l\le j\ 且\ a[k]+l\le a[i]+j)f[i][j]=Max{ f[k][l]+1 }(l≤j 且 a[k]+l≤a[i]+j)那么后面的条件实际上是一个三维偏序(算上编号),这道题数据范围小,直接二维树状数组优化就行了.
时间复杂度O(nk∗log k∗log A)O(nk*log\ k*log\ A)O(nk∗log k∗log A).AAA是最大的a[i]+ka[i]+ka[i]+k,空间复杂度是O(kA)O(kA)O(kA)的.
还能CDQ分治吧…
CODE
#include<bits/stdc++.h>
using namespace std;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
template<class T>inline void read(T &res) {
char ch; int flg = 1; while(!isdigit(ch=getc()))if(ch=='-')flg=-flg;
for(res=ch-'0';isdigit(ch=getc());res=res*10+ch-'0'); res*=flg;
}
const int MAXK = 505;
const int MAXM = 5505;
const int MAXN = 10005;
int n, k, m, T[MAXK][MAXM], a[MAXN];
inline void chkmax(int &x, int y) { if(y > x) x = y; }
inline void upd(int x, int y, int val) {
for(int i = x+1; i <= k+1; i += i&-i)
for(int j = y+1; j <= m+1; j += j&-j)
chkmax(T[i][j], val);
}
inline int qsum(int x, int y) {
int re = 0;
for(int i = x+1; i; i -= i&-i)
for(int j = y+1; j; j -= j&-j)
chkmax(re, T[i][j]);
return re;
}
int main() {
read(n), read(k);
for(int i = 1; i <= n; ++i)
read(a[i]), chkmax(m, a[i]);
m += k;
int ans = 0;
for(int i = 1; i <= n; ++i)
for(int j = k, f_i_j; ~j; --j) {
chkmax(ans, f_i_j = qsum(j, a[i]+j) + 1);
upd(j, a[i]+j, f_i_j);
}
printf("%d\n", ans);
}
BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)的更多相关文章
- [BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp
我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #in ...
- [Scoi2014]方伯伯的玉米田 二维树状数组+动态规划
考试最后半个小时才做这道题.十分钟写了个暴力还写挂了..最后默默输出n.菜鸡一只. 这道题比较好看出来是动规.首先我们要明确一点.因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比 ...
- BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)
可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MB Submit: 1399 Solved: 627 [Submit][ ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- BZOJ 3594 [Scoi2014]方伯伯的玉米田(二维树状数组)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题目大意] 给出一个数列,选出k个区间使得区间内数全部加1, 求k次操作之后最 ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田【二维树状数组+dp】
设f[i][j]为前i棵玉米被拔高了j(因为是单调不降所以前面越高越好,所以每次拔一个前缀),转移是f[i][j]=f[k][l]+1,l<=j,a[k]+l<=a[i]+j,然后用二维树 ...
- bzoj 3594 [Scoi2014]方伯伯的玉米田(DP+二维BIT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题意] 给定一个n个数的序列,有K次将一个区间内的数加1的机会,问最长不下降子 ...
随机推荐
- hdoj2196(树形dp,树的直径)
题目链接:https://vjudge.net/problem/HDU-2196 题意:给出一棵树,求每个结点可以到达的最远距离. 思路: 如果求得是树上最长距离,两次bfs就行.但这里求的是所有点的 ...
- Web循环监控Java调用 / Java调用.net wcf接口
背景介紹 (Background Introduction) 目前有一些报表客户抱怨打不开 报表执行过程过长,5.8.10秒甚至更多 不能及时发现和掌握服务器web站点情况 用戶需求(User Req ...
- PAT A1011 World Cup Betting(20)
AC代码 #include <cstdio> #include <algorithm> const int max_n = 3; using namespace std; /* ...
- 【IntelliJ IDEA】快捷键
1.System.out.println();的快捷方法 sout然后Alt+Enter或者直接点 2.idea上 重写父类方法的快捷键 Ctrl+O之后,在弹出的上面选择要重写的方法 3.idea ...
- 怎样理解 Vue 中的计算属性 computed 和 methods ?
需求: 在 Vue 中, 我们可以像下面这样通过在 引号 或 双花括号 内写 js 表达式去做一些简单运算, 这是可以的, 不过这样写是不直观的, 而且在 html 中 夹杂 一些运算逻辑这种做法其实 ...
- 7.bash作业控制
7.作业控制本节讨论作业控制是什么.它怎么工作.以及 Bash 里面怎么使用这些功能7.1 作业控制基础作业控制是指有选择的停止(暂停)并在后来继续(恢复)执行某个进程的能力.通常,用户通过 Bash ...
- Upload Image to .NET Core 2.1 API
原文地址:https://www.codeproject.com/Articles/1256591/Upload-Image-to-NET-Core-2-1-API using System; usi ...
- SSE笔记
1.8位加: *(__m128i*)(dest + i * 16) = _mm_add_epi8(*(__m128i*)(srcA + i * 16), *(__m128i*)(srcB + i * ...
- centos7配置rsync+inotify数据实时共享
关于centos7版本上面搭建rsync服务并且实现实时同步之前一直是在6版本上面搭建rsync服务,在7版本上面折腾了半天.此处总结下inotify下载地址:http://github.com/do ...
- 从零开始搭建react应用
用create-react-app搭建react应用,了解npm run start的工作过程. 第一步:安装脚手架 create-react-app 1. 在node里 npm install cr ...