思路:$tarjan+DP$

提交:1次

题解:首先对于一个强连通分量一定是一个半连通分量,并且形成的半连通分量的大小一定是它的$size$,所以我们先缩点。

这样,我们相当于要在新的$DAG$上找一个最长链(一旦有分叉边就不可能是一个半连通分量)。

于是乎写了个$dfs$,$sz[u]$表示这个(缩完后的)点的包含点的数量,$mx[u]$表示以$u$为起点最长链的长度,$tot[u]$表示方案数。

但是注意这个图有可能不连通。

#include<cstdio>
#include<iostream>
#include<map>
#define ull unsigned long long
#define ll long long
#define R register int
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=,M=;
map<pair<int,int>,bool> mp;
int n,m,mod;
int vr[M<<],nxt[M<<],fir[M<<],cnt;
inline void add(int u,int v) {vr[++cnt]=v,nxt[cnt]=fir[u],fir[u]=cnt;}
int vv[M<<],nn[M<<],ff[M<<],ct;
inline void adde(int u,int v) {vv[++ct]=v,nn[ct]=ff[u],ff[u]=ct;}
int dfn[N],low[N],c[N],stk[N],sz[N],t[N],num,cc,top;
bool vis[N];
inline void tarjan(int u) {
dfn[u]=low[u]=++num; stk[++top]=u,vis[u]=true;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(!dfn[v]) {
tarjan(v);
low[u]=min(low[u],low[v]);
} else if(vis[v]) low[u]=min(low[u],dfn[v]);
} if(dfn[u]==low[u]) {
++cc; R tmp;
do tmp=stk[top],--top,c[tmp]=cc,++sz[cc],vis[tmp]=false; while(tmp!=u);
}
}
int anss,ans,mx[N],tot[N];
inline void dfs(int u) {
vis[u]=true; mx[u]=sz[u],tot[u]=;
for(R i=ff[u];i;i=nn[i]) { R v=vv[i];
if(!vis[v]) dfs(v);
if(sz[u]+mx[v]>mx[u]) {
mx[u]=sz[u]+mx[v];
tot[u]=tot[v];
} else if(sz[u]+mx[v]==mx[u])
tot[u]=(tot[u]+tot[v])%mod;
} ans=max(mx[u],ans);
}
inline void main() {
n=g(),m=g(),mod=g();
for(R i=,u,v;i<=m;++i) u=g(),v=g(),add(u,v);
for(R i=;i<=n;++i) if(!dfn[i]) tarjan(i);
for(R u=;u<=n;++u) for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(c[u]!=c[v]&&mp.find(make_pair(c[u],c[v]))==mp.end())
++t[c[v]],adde(c[u],c[v]),mp[make_pair(c[u],c[v])]=true;
} for(R i=;i<=cc;++i) if(!t[i]||!vis[i]) dfs(i);
for(R i=;i<=cc;++i) if(mx[i]==ans) anss=(anss+tot[i])%mod;
printf("%d\n%d\n",ans,anss);
}
}
signed main() {
Luitaryi::main();
return ;
}

2019.07.22

P2272 [ZJOI2007]最大半连通子图 tarjan+DP的更多相关文章

  1. Luogu P2272 [ZJOI2007]最大半连通子图(Tarjan+dp)

    P2272 [ZJOI2007]最大半连通子图 题意 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v\in V\) ...

  2. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  3. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

  4. 洛谷 P2272 [ZJOI2007]最大半连通子图 解题报告

    P2272 [ZJOI2007]最大半连通子图 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v \in V\),满 ...

  5. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  6. [luogu2272 ZJOI2007] 最大半连通子图 (tarjan缩点 拓扑排序 dp)

    传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向 ...

  7. luogu P2272 [ZJOI2007]最大半连通子图

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若 ...

  8. [ZJOI2007]最大半连通子图 (Tarjan缩点,拓扑排序,DP)

    题目链接 Solution 大概是个裸题. 可以考虑到,如果原图是一个有向无环图,那么其最大半联通子图就是最长的一条路. 于是直接 \(Tarjan\) 缩完点之后跑拓扑序 DP就好了. 同时由于是拓 ...

  9. BZOJ 1093 [ZJOI2007]最大半连通子图 - Tarjan 缩点

    Description 定义一个半联通图为 : 对任意的两个点$u, v$,都有存在一条路径从$u$到$v$, 或从$v$到$u$. 给出一个有向图, 要求出节点最多的半联通子图,  并求出方案数. ...

随机推荐

  1. LeetCode. 阶乘后的零

    题目要求: 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 解法: class Solution { public: int ...

  2. pythn print格式化输出:%s与%d

    pythn print格式化输出. %r 用来做 debug 比较好,因为它会显示变量的原始数据(raw data),而其它的符号则是用来向用户显示输出的. 1. 打印字符串 print (" ...

  3. Web前后端分离开发(CRUD)及其演变概括

    今天学习了前后端分离开发模式又从网上查了一些资料就写了一篇博客分享: 一.为什么分离前后端 1.1早期开发 1.2后段为主mvc模式 1.2.1Structs框架介绍 1.2.2Spring mcv开 ...

  4. vuex 理解

    为什么要用vuex?页面由多个视图组成,用户操作会引视图的状态变化. 多个视图依赖于同一状态(例如:菜单导航) 来自不同视图的行为需要变更同一状态(例如:评论弹幕) vuex 的作用 为vue.js开 ...

  5. sql 触发器里,发生错误,回滚提示错误语句

    SET @msg='错误消息';                RAISERROR(@msg, 16, 1);                ROLLBACK TRANSACTION;         ...

  6. .NetCore如何使用ImageSharp进行图片的生成

    ImageSharp是对NetCore平台扩展的一个图像处理方案,以往网上的案例多以生成文字及画出简单图形.验证码等方式进行探讨和实践. 今天我分享一下所在公司项目的实际应用案例,导出微信二维码图片, ...

  7. 在sublime3中运行python文件

    1.首先下载Sublime和Python,安装Python环境 注意:如果不想动手亲自配置Python环境安装的时候环境变量,请在安装的界面给Add Python 3.5 To Path前面打上对号. ...

  8. buffer 与 cache 的区别

    Buffer 和 Cache buffer 和 cache 同样作为缓存,他们之间有什么区别呢? 简单来说,buffer 是即将要写入磁盘的缓存,而 cache 是从磁盘中读出来放到缓存的 参考来自: ...

  9. Python考试_第三次

    - python 全栈11期月考题 一 基础知识:(70分) 1.文件操作有哪些模式?请简述各模式的作用(2分) 2.详细说明tuple.list.dict的用法,以及它们的特点(3分) 3.解释生成 ...

  10. 如何判断是否是ssd硬盘?win10查看固态硬盘的方法

    转自:http://www.w10zj.com/Win10xy/Win10yh_7732.html 如何判断是否是ssd硬盘?在win10操作系统中我们该如何查看当前主机中安装的是固态硬盘还是机械硬盘 ...