一、学习Spark RDD

RDD是Spark中的核心数据模型,一个RDD代表着一个被分区(partition)的只读数据集。

RDD的生成只有两种途径:

一种是来自于内存集合或外部存储系统;

另一种是通过转换操作来自于其他RDD;

一般需要了解RDD的以下五个接口:

partition分区,一个RDD会有一个或者多个分区

dependencies()RDD的依赖关系

preferredLocations(p)对于每个分区而言,返回数据本地化计算的节点

compute(p,context)对于分区而言,进行迭代计算

partitioner()RDD的分区函数

1.1 RDD分区(partitions)

一个RDD包含一个或多个分区,每个分区都有分区属性,分区的多少决定了对RDD进行并行计算的并行度。

在生成RDD时候可以指定分区数,如果不指定分区数,则采用默认值,系统默认的分区数,是这个程序所分配到的资源的CPU核数。

可以使用RDD的成员变量partitions返回RDD对应的分区数组:

scala> var file = sc.textFile("/tmp/lxw1234/1.txt")

file: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[5] at textFile at :21

scala> file.partitions

res14: Array[org.apache.spark.Partition] = Array(org.apache.spark.rdd.HadoopPartition@735, org.apache.spark.rdd.HadoopPartition@736)

scala> file.partitions.size

res15: Int = 2 //默认两个分区

//可以指定RDD的分区数

scala> var file = sc.textFile("/tmp/lxw1234/1.txt",4)

file: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[7] at textFile at :21

scala> file.partitions

res16: Array[org.apache.spark.Partition] = Array(org.apache.spark.rdd.HadoopPartition@787, org.apache.spark.rdd.HadoopPartition@788, org.apache.spark.rdd.HadoopPartition@789, org.apache.spark.rdd.HadoopPartition@78a)

scala> file.partitions.size

res17: Int = 4

1.2 RDD依赖关系(dependencies)

由于RDD即可以由外部存储而来,也可以从另一个RDD转换而来,因此,一个RDD会存在一个或多个父的RDD,这里面也就存在依赖关系,

窄依赖:

每一个父RDD的分区最多只被子RDD的一个分区所使用,如图所示:

 

宽依赖

多个子RDD的分区会依赖同一个父RDD的分区,如图所示:

 

以下代码可以查看RDD的依赖信息:

scala> var file = sc.textFile("/tmp/lxw1234/1.txt")

file: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[9] at textFile at :21

scala> file.dependencies.size

res20: Int = 1 //返回RDD的依赖数量

scala> file.dependencies(0)

res19:

org.apache.spark.Dependency[_] = org.apache.spark.OneToOneDependency@33c5abd0

//返回RDD file的第一个依赖

scala> file.dependencies(1)

java.lang.IndexOutOfBoundsException: 1

//因为file只有一个依赖,想获取第二个依赖时候,报了数组越界

需要大数据学习资料和交流学习的同学可以加大数据学习群:724693112 有免费资料分享和一群学习大数据的小伙伴一起努力

再看一个存在多个父依赖的例子:

scala> var rdd1 = sc.textFile("/tmp/lxw1234/1.txt")

rdd1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[11] at textFile at :21

scala> var rdd2 = sc.textFile("/tmp/lxw1234/1.txt")

rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[13] at textFile at :21

scala> var rdd3 = rdd1.union(rdd2)

rdd3: org.apache.spark.rdd.RDD[String] = UnionRDD[14] at union at :25

scala> rdd3.dependencies.size

res24: Int = 2 // rdd3依赖rdd1和rdd2两个RDD

//分别打印出rdd3的两个父rdd,即 rdd1和rdd2的内容

scala> rdd3.dependencies(0).rdd.collect

res29: Array[_] = Array(hello world, hello spark, hello hive, hi spark)

scala> rdd3.dependencies(1).rdd.collect

res30: Array[_] = Array(hello world, hello spark, hello hive, hi spark)

1.3 RDD优先位置(preferredLocations)

RDD的优先位置,返回的是此RDD的每个partition所存储的位置,这个位置和Spark的调度有关(任务本地化),Spark会根据这个位置信息,尽可能的将任务分配到数据块所存储的位置,以从Hadoop中读取数据生成RDD为例,preferredLocations返回每一个数据块所在的机器名或者IP地址,如果每一个数据块是多份存储的(HDFS副本数),那么就会返回多个机器地址。

看以下代码:

scala> var file = sc.textFile("/tmp/lxw1234/1.txt")

file: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[16] at textFile at :21

//这里的file为MappedRDD

scala> var hadoopRDD = file.dependencies(0).rdd

hadoopRDD: org.apache.spark.rdd.RDD[_] = /tmp/lxw1234/1.txt HadoopRDD[15] at textFile at :21 //这里获取file的父RDD,即hdfs文件/tmp/lxw1234/1.txt对应的HadoopRDD

scala> hadoopRDD.partitions.size

res31: Int = 2 //hadoopRDD默认有两个分区

//下面分别获取两个分区的位置信息

scala> hadoopRDD.preferredLocations(hadoopRDD.partitions(0))

res32: Seq[String] = WrappedArray(slave007.lxw1234.com, slave004.lxw1234.com)

scala> hadoopRDD.preferredLocations(hadoopRDD.partitions(1))

res33: Seq[String] = WrappedArray(slave007. lxw1234.com, slave004.lxw1234.com)

##

由于HDFS副本数设置为2,因此每个分区的位置信息中包含了所有副本(2个)的位置信息,这样Spark可以调度时候,根据任何一个副本所处的位置进行本地化任务调度。

1.4 RDD分区计算(compute)

基于RDD的每一个分区,执行compute操作。

对于HadoopRDD来说,compute中就是从HDFS读取分区中数据块信息。

对于JdbcRDD来说,就是连接数据库,执行查询,读取每一条数据。

1.5 RDD分区函数(partitioner)

目前Spark中实现了两种类型的分区函数,HashPartitioner(哈希分区)和RangePartitioner(区域分区)。

partitioner只存在于类型的RDD中,非类型的RDD的partitioner值为None.

partitioner函数既决定了RDD本身的分区数量,也可作为其父RDD Shuffle输出中每个分区进行数据切割的依据。

scala> var a = sc.textFile("/tmp/lxw1234/1.txt").flatMap(line => line.split("\\s+"))

a: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[19] at flatMap at :21

scala> a.partitioner

res15: Option[org.apache.spark.Partitioner] = None // RDD a为非类型

scala> var b = a.map(l => (l,1)).reduceByKey((a,b) => a + b)

b: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[21] at reduceByKey at :30

scala> b.partitioner

res16: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.HashPartitioner@2)

//RDD b为类型,采用的是默认的partitioner- HashPartitioner

Spark RDD学习笔记的更多相关文章

  1. Spark 基本函数学习笔记一

      Spark 基本函数学习笔记一¶ spark的函数主要分两类,Transformations和Actions. Transformations为一些数据转换类函数,actions为一些行动类函数: ...

  2. Hadoop/Spark入门学习笔记(完结)

    Hadoop基础及演练 ---第1章 初识大数据 大数据是一个概念也是一门技术,是在以Hadoop为代表的大数据平台框架上进行各种数据分析的技术. ---第2章 Hadoop核心HDFS Hadoop ...

  3. Spark RDD学习

    RDD(弹性分布式数据集)是Spark的核心抽象.它是一组元素,在集群的节点之间进行分区,以便我们可以对其执行各种并行操作. 创建RDD的两种方式: 并行化驱动程序中的现有数据: 引用外部存储系统中的 ...

  4. spark scala学习笔记

    搞清楚几个概念: 闭包 柯里化 搭建了intellij idea 的scala 开发环境

  5. spark shell学习笔记

    http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

  6. Spark RDD设计学习笔记

    本文档是学习RDD经典论文<Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster ...

  7. Spark学习笔记3——RDD(下)

    目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...

  8. Spark学习笔记2——RDD(上)

    目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...

  9. Spark学习笔记——RDD编程

    1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作 ...

随机推荐

  1. 【转】netty4.1.32 pipeline的添加顺序和执行顺序

    原文:https://www.cnblogs.com/ruber/p/10186571.html 本文只想讨论一下pipeline的执行顺序问题,因为这个搞不明白就不知道先添加编码还是解码,是不是可以 ...

  2. protobuf ubuntu 18.04环境下安装

    (t20190518) luo@luo-All-Series:~/MyFile$ (t20190518) luo@luo-All-Series:~/MyFile$ (t20190518) luo@lu ...

  3. 16Flutter中的路由 基本路由 基本路由跳转传值(上)

    /* Flutter中的普通路由.普通路由传值.命名路由.命名路由传值 Flutter中的路由通俗的讲就是页面跳转.在Flutter中通过Navigator组件管理路由导航. 并提供了管理堆栈的方法. ...

  4. ios 自动去重

      //resultArrM 数据原//_indexArray 过滤后的数据//MYSelectAreaModel 模型 /* 重定义索引 */ - (void)sy_indexArray{ /* 索 ...

  5. STM32第二章I/O端口应用

    STM32F10xxx系列中,有7个I/O端口,每个端口有两个32位配置寄存器(GPIOx_CRL,GPIOx_CRH),两个32位数据寄存器(GPIOx_IDR和GPIOx_ODR),一个32位置位 ...

  6. golang struct组合,转型问题请教

    type Action interface { OnHurt2(other Action) GetDamage() int } type Base struct { atk, hp int } fun ...

  7. 【转】TCP/IP网络协议各层首部

    ​ 数据包封装流程(逐层封装,逐层解封) 二层帧(二层帧中目的地址6个字节,源地址6个字节,长度/类型2个字节,二层帧共18个字节) ip头部(ip头部20字节) tcp头部(tcp头部20个字节): ...

  8. C#实现自动刷新网页

    需要的童鞋可以下载整个项目:http://pan.baidu.com/s/1geMADvP 运行效果图如下:

  9. 第07组 Alpha冲刺(1/4)

    队名:秃头小队 组长博客 作业博客 组长徐俊杰 过去两天完成的任务:完成人员分配,初步学习Android开发 Github签入记录 接下来的计划:继续完成Android开发的学习,带领团队进行前后端开 ...

  10. Windows下直接双击可执行的jar

    如果没有设置,那么就是用命令行: jar处在文件夹路径下打开命令行:java -jar xxx.jar 总的来说是有点不方便 首先默认打开jar程序得是相同jdk的java.exe 然后是一闪而过 下 ...