ZOJ-2972-Hurdles of 110m(线性dp)
Hurdles of 110m
Time Limit: 2 Seconds Memory Limit: 65536 KB
In the year 2008, the 29th Olympic Games will be held in Beijing. This will signify the prosperity of China and Beijing Olympics is to be a festival for people all over the world as well.
Liu Xiang is one of the famous Olympic athletes in China. In 2002 Liu broke Renaldo Nehemiah's 24-year-old world junior record for the 110m hurdles. At the 2004 Athens Olympics Games, he won the gold medal in the end. Although he was not considered as a favorite for the gold, in the final, Liu's technique was nearly perfect as he barely touched the sixth hurdle and cleared all of the others cleanly. He powered to a victory of almost three meters. In doing so, he tied the 11-year-old world record of 12.91 seconds. Liu was the first Chinese man to win an Olympic gold medal in track and field. Only 21 years old at the time of his victory, Liu vowed to defend his title when the Olympics come to Beijing in 2008.
In the 110m hurdle competition, the track was divided into N parts by the hurdle. In each part, the player has to run in the same speed; otherwise he may hit the hurdle. In fact, there are 3 modes to choose in each part for an athlete -- Fast Mode, Normal Mode and Slow Mode. Fast Mode costs the player T1 time to pass the part. However, he cannot always use this mode in all parts, because he needs to consume F1 force at the same time. If he doesn't have enough force, he cannot run in the part at the Fast Mode. Normal Mode costs the player T2 time for the part. And at this mode, the player's force will remain unchanged. Slow Mode costs the player T3 time to pass the part. Meanwhile, the player will earn F2 force as compensation. The maximal force of a player is M. If he already has M force, he cannot earn any more force. At the beginning of the competition, the player has the maximal force.
The input of this problem is detail data for Liu Xiang. Your task is to help him to choose proper mode in each part to finish the competition in the shortest time.
Input
Standard input will contain multiple test cases. The first line of the input is a single integer T (1 <= T <= 50) which is the number of test cases. And it will be followed by T consecutive test cases.
Each test case begins with two positive integers N and M. And following N lines denote the data for the N parts. Each line has five positive integers T1 T2 T3 F1 F2. All the integers in this problem are less than or equal to 110.
Output
Results should be directed to standard output. The output of each test case should be a single integer in one line, which is the shortest time that Liu Xiang can finish the competition.
Sample Input
2
1 10
1 2 3 10 10
4 10
1 2 3 10 10
1 10 10 10 10
1 1 2 10 10
1 10 10 10 10
Sample Output
1
6
Hint
For the second sample test case, Liu Xiang should run with the sequence of Normal Mode, Fast Mode, Slow Mode and Fast Mode
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int t,n,m,ans;
int t1[],t2[],t3[],f1[],f2[];
int dp[][];//dp[i][j]表示第i个障碍,还剩j的能力时最短是时间
int main()
{
while(~scanf("%d",&t))
{
for(;t>;t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d%d%d%d%d",&t1[i],&t2[i],&t3[i],&f1[i],&f2[i]);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dp[i][j]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
/*
dp[i][j]=dp[i-1][j]+t2[i];
if (j+f1[i]<=m) dp[i][j]=min(dp[i][j],dp[i-1][j+f1[i]]+t1[i]);
if(j>=f2[i]) dp[i][j]=min(dp[i][j],dp[i-1][j-f2[i]]+t3[i]);
//想了半天,突然想到,这样写,让选用三方案后能量超过m的情况被忽略了。
*/
dp[i][j]=min(dp[i][j],dp[i-][j]+t2[i]);
if (j>=f1[i]) dp[i][j-f1[i]]=min(dp[i][j-f1[i]],dp[i-][j]+t1[i]);
dp[i][min(j+f2[i],m)]=min(dp[i][min(j+f2[i],m)],dp[i-][j]+t3[i]);
}
/* for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
printf("%d ",dp[i][j]);
printf("\n");
}*/
ans=;
for(int i=;i<=m;i++)
ans=min(ans,dp[n][i]);
printf("%d\n",ans);
}
}
return ;
}
ZOJ-2972-Hurdles of 110m(线性dp)的更多相关文章
- ZOJ 2972 Hurdles of 110m 【DP 背包】
一共有N段过程,每段过程里可以选择 快速跑. 匀速跑 和 慢速跑 对于快速跑会消耗F1 的能量, 慢速跑会集聚F2的能量 选手一开始有M的能量,即能量上限 求通过全程的最短时间 定义DP[i][j] ...
- zoj 2972 - Hurdles of 110m
题目:110米栏,运动员能够用三种状态跑,1状态耗体力且跑得快,2状态不消耗体力,3状态恢复体力且跑得慢. 体力上限是M,且初始满体力,如今想知到最小的时间跑全然程. 分析:dp,全然背包.题目是一个 ...
- zju 2972 Hurdles of 110m(简单的dp)
题目 简单的dp,但是我还是参考了网上的思路,具体我没考虑到的地方见代码 #include<stdio.h> #include<iostream> #include<st ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- Submine Text 快捷键
Ctrl+Shift+P:打开命令面板 Ctrl+P:搜索项目中的文件 Ctrl+G:跳转到第几行 Ctrl+W:关闭当前打开文件 Ctrl+Shift+W:关闭所有打开文件 Ctrl+Shift+V ...
- ansible一些基本操作
一.介绍 特性 (1).no agents:不需要在被管控主机上安装任何客户端: (2).no server:无服务器端,使用时直接运行命令即可: (3).modules in any languag ...
- js实现excel的解析
在浏览网页的时候不小心看到了这个github的资源(https://github.com/SheetJS/js-xlsx),真不错.之前在开发的时候曾遇到客户要求在前端解析excel并展示出来.这里记 ...
- Linux 日志分析工具(logwatch)安装及使用
Linux 日志分析工具(logwatch)安装及使用 日志是非常重要的系统文件,管理员每天的重要工作就是分析和查看服务器的日志,判断服务器的健康状态.但是日志管理又是一项非常枯燥的工作,如果需要管理 ...
- POSIX 进程间通信 (可移植操作系统接口)
1.什么是POSIX标准 Portable Operating System Interface for Computing System. 他是一个针对操作系统(准确地说是针对类Unix操作系统)的 ...
- linux及安全第二周总结——20135227黄晓妍
实验部分: 首先运行结果截图 代码分析: Mypcb.h /* * linux/mykernel/mypcb.h * * Kernel internal PCB types * * Copyri ...
- Could not reserve enough space for 1572864KB object heap
This problem might be caused by incorrect configuration of the daemon.For example, an unrecognized j ...
- [异常记录(二)] 验证视图状态 MAC 失败。如果此应用程序由网络场或群集承载,请确保 <machineKey> 配置指定了相同的 validationKey 和验证算法。不能在群集中使用 AutoGenerate。
错误提示: 验证视图状态 MAC 失败.如果此应用程序由网络场或群集承载,请确保 <machineKey> 配置指定了相同的 validationKey 和验证算法.不能在群集中使用 Au ...
- 03_MySQL DQL_排序查询
#进阶3:排序查询/*语法: select 查询列表 from 表名 [where 筛选条件] order by 排序列表 [asc|desc] 特点: 1.asc升序,desc降序, 如果都不写,默 ...
- 第一个版本库 Repository
Git安装 Windows系统 Git 为 Windows 系统提供了简易的 .exe 安装包, 直接下载并安装就可以了(点这里->):https://git-scm.com/download/ ...