4094: [Usaco2013 Dec]Optimal Milking

Description

Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号为1 ... N,并排成一行。第i台挤奶机每天能够挤M(i)单位的牛奶 (1 < =M(i) <=100,000)。
由于机器间距离太近,使得两台相邻的机器不能在同一天使用。Farmer John可以自由选择不同的机器集合在不同的日子进行挤奶。
在D(1 < = D < = 50,000)天中,每天Farmer John对某一台挤奶机进行维护,改变该挤奶机的当天产量。
Farmer John希望设计一个挤奶方案,使得挤奶机能够在D天后获取最多的牛奶。

Input

第1行:两个整数N和D
第2..N+1行:每台挤奶机的M(i)
第N+2..N+D+1行:两个整数i和m,表示每天对机器i进行维护,机器i的产量为m。

Output

最大产量

Sample Input

5 3
1
2
3
4
5
5 2
2 7
1 10

Sample Output

32
【样例解释】
第1天,最优方案为2+4=6 ( 方案1+3+2一样)
第2天,最优方案为7+4=11
第3天,最优方案为10+3+2=15

Source

Gold

题解:

线段树。。

没什么好说的。。

发四种情况讨论

1.两边都选

2.左选右不选

3.左不选右选

4.都不选

#include<stdio.h>
#include<iostream>
using namespace std;
const int N=40005;
#define p1 (p<<1)
#define p2 (p<<1|1)
int n,m,i,x,y,a[N],t[N<<2][4];
long long ans;
inline void read(int&a){
char c;
while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';
while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';
}
void pushup(int p)
{
t[p][0]=t[p][1]=t[p][2]=t[p][3]=0;
if(t[p1][0]!=-1&&t[p2][2]!=-1) t[p][0]=t[p1][0]+t[p2][2];
if(t[p1][1]!=-1&&max(t[p2][0],t[p2][2])!=-1) t[p][0]=max(t[p][0],t[p1][1]+max(t[p2][0],t[p2][2]));
if(t[p1][0]!=-1&&t[p2][3]!=-1) t[p][1]=t[p1][0]+t[p2][3];
if(t[p1][1]!=-1&&max(t[p2][1],t[p2][3])!=-1) t[p][1]=max(t[p][1],t[p1][1]+max(t[p2][1],t[p2][3]));
if(t[p1][2]!=-1&&t[p2][2]!=-1) t[p][2]=t[p1][2]+t[p2][2];
if(t[p1][3]!=-1&&max(t[p2][0],t[p2][2])!=-1) t[p][2]=max(t[p][2],t[p1][3]+max(t[p2][0],t[p2][2]));
if(t[p1][2]!=-1&&t[p2][3]!=-1) t[p][3]=t[p1][2]+t[p2][3];
if(t[p1][3]!=-1&&max(t[p2][1],t[p2][3])!=-1) t[p][3]=max(t[p][3],t[p1][3]+max(t[p2][1],t[p2][3]));
}
void build(int l,int r,int p)
{
if(l==r)
{
t[p][0]=a[l];
t[p][3]=0;t[p][1]=t[p][2]=-1;
return;
}
int mid=(l+r)>>1;
build(l,mid,p1);build(mid+1,r,p2);
pushup(p);
}
void update(int l,int r,int x,int y,int p)
{
if(l==r)
{
t[p][0]=y;
return;
}
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,y,p1);else update(mid+1,r,x,y,p2);
pushup(p);
}
int main()
{
read(n),read(m);
for(i=1;i<=n;i++) read(a[i]);
build(1,n,1);
while(m--)
{
read(x),read(y);
update(1,n,x,y,1);
ans+=max(max(t[1][0],t[1][1]),max(t[1][2],t[1][3]));
}
cout<<ans;
return 0;
}

  

bzoj 4094: [Usaco2013 Dec]Optimal Milking的更多相关文章

  1. 【BZOJ4094】[Usaco2013 Dec]Optimal Milking 线段树

    [BZOJ4094][Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号 ...

  2. bzoj 4097: [Usaco2013 dec]Vacation Planning

    4097: [Usaco2013 dec]Vacation Planning Description Air Bovinia is planning to connect the N farms (1 ...

  3. BZOJ 4094 USACO 2013 Dec. Optimal Milking

    线段树 每个节点保存4个值,both表示左右端点都取,neither表示左右端点都不取,left表示只取左端点,right表示只取右端点. 维护的特殊姿势: $cur$的$both=max(ls.l+ ...

  4. Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏

    Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...

  5. POJ2112 Optimal Milking (网络流)(Dinic)

                                             Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  6. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  7. poj Optimal Milking

    Optimal Milking 题目: 有K个机器.C仅仅牛.要求求出最全部牛到各个产奶机的最短距离.给出一个C+K的矩阵,表示各种标号间的距离. 而每一个地方最多有M仅仅牛. 算法分析: 二分+最短 ...

  8. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  9. 题解 最优的挤奶方案(Optimal Milking)

    最优的挤奶方案(Optimal Milking) 时间限制: 1 Sec  内存限制: 128 MB 题目描述 农场主 John 将他的 K(1≤K≤30)个挤奶器运到牧场,在那里有 C(1≤C≤20 ...

随机推荐

  1. 天梯赛L2-008 最长对称子串 (字符串处理)

    对给定的字符串,本题要求你输出最长对称子串的长度.例如,给定"Is PAT&TAP symmetric?",最长对称子串为"s PAT&TAP s&quo ...

  2. python 协程嵌套

    import asyncio import time now = lambda: time.time() async def do_some_work(x): print('Waiting: ', x ...

  3. 你需要知道的Nginx配置二三事

    做服务端开发的,工作中难免会遇到处理Nginx配置相关问题.在配置Nginx时,我一直本着“照葫芦画瓢”的原则,复制已有的配置代码,自己修修改改然后完成配置需求,当有人问起Nginx相关问题时,其实仍 ...

  4. Hadoop(一):概述

    一.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.Hadoop框架最核心的设计包含两个方面,一是分布式文件系统(Hadoop Distributed File ...

  5. PCA算法和SVD

    如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值.这里可以将特征值为负,特征向量旋转180度,也可看成方向不变,伸缩 ...

  6. DBCP object created 日期 by the following code was never closed:

    1.分析 看到标题 DBCP 首先想到的肯定是 数据库连接池哪方面有问题,那么先别着急去解决,不要一股脑就钻进逻辑代码中,然后启用调试就开始一步一步 的分析.我们首先要做的就是想,想想数据库连接池,在 ...

  7. Django之进阶相关操作

    一.QuerySet的特点 1.可切片 使用Python 的切片语法来限制查询集记录的数目 .它等同于SQL 的LIMIT 和OFFSET 子句. 1 >>> Entry.objec ...

  8. C++的黑科技(深入探索C++对象模型)

    周二面了腾讯,之前只投了TST内推,貌似就是TST面试了 其中有一个问题,“如何产生一个不能被继承的类”,这道题我反反复复只想到,将父类的构造函数私有,让子类不能调用,最后归结出一个单例模式,但面试官 ...

  9. 【hdoj_2566】统计硬币(母函数?)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2566 本题可以借鉴母函数(组合数学)的思想. 题目可以这样理解:给一堆硬币,分别有1,2,5元的各无数个, ...

  10. MINIBASE源代码阅读笔记之DB

    DB 管理数据库的类 file_entry:dir page的元素,保存不同文件对应的page directory_page:dir page的专用结构体,里面有个初始长度为0的variable si ...